首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang ZF  Shi YL 《Neuroscience》2001,104(1):41-47
The effect of toosendanin, a selective presynaptic blocker and effective antibotulismic agent, on large-conductance Ca(2+)-activated K(+) channels was studied in inside-out patches of pyramidal neurons freshly isolated from the hippocampal CA1 region of the rat. Toosendanin (1 x 10(-6)g/ml approximately 1 x 10(-4)g/ml) was found to inhibit large-conductance Ca(2+)-activated K(+) channels by reducing its open probability significantly in a concentration-dependent manner, although the effective concentration of toosendanin was lower in a symmetrical K(+) (150 mM) solution than under asymmetrical conditions (changing K(+) concentration in pipette solution to 5mM). The action was partially reversible by washing. By decreasing the slow open time constant, toosendanin shortened the open dwell time of large-conductance Ca(2+)-activated K(+) channels in a dose-dependent manner. A dose-dependent reduction of unitary current amplitude of the channel was detected after toosendanin perfusion. On elevating the intracellular free calcium concentration from 1 to 10 microM, a similar effect on large-conductance Ca(2+)-activated K(+) channels by toosendanin was also observed, but its efficacy was diminished.These results show that toosendanin inhibits large-conductance Ca(2+)-activated K(+) channels in hippocampal neurons by reducing the open probability and unitary current amplitude of the channel, and that Ca(2+) interferes with the effect. These data provide an explanation for toosendanin-induced facilitation of neurotransmitter release and the antibotulismic effect of the drug.  相似文献   

2.
3.
The effects of 9,11-epithio-11,12-methano-thromboxane A(2) (STA(2)), a stable thromboxane A(2) analogue, and carbachol on colonic Ca(2+)-activated K(+) channels were studied. In indo-1-loaded single cells in isolated rat colonic crypts, both STA(2) (0.1 microM) and carbachol (10 microM) transiently increased intracellular free Ca(2+) concentration ([Ca(2+)](i)) by 136 and 155 nm, respectively. In whole-cell current-clamp experiments of the colonic crypt cells with Cl(-)-free solutions, carbachol (10 microM) hyperpolarized the cell by 19.7 mV, while STA(2) (0.1 microM) did not affect the membrane potential. In the isolated colonic mucosa that was permeabilized mucosally by a monovalent ionophore nystatin in the presence of a serosally directed K(+) gradient, carbachol (10 microM) transiently elicited K(+) current, but STA(2) (0.1 microM) did not. These results indicate that STA(2) elevates [Ca(2+)](i) in rat colonic crypt cells but does not activate basolateral Ca(2+)-activated K(+) channels.  相似文献   

4.
Chae KS  Dryer SE 《Neuroscience》2005,135(4):1013-1016
Endogenous beta-neuregulin-1 is required for the plasma membrane expression of large-conductance (BK-type) Ca2+-activated K+ channels in developing chick ciliary neurons of the chick ciliary ganglion. During normal development, beta-neuregulin-1 acts in concert with transforming growth factor-beta1 to stimulate movement of large-conductance Ca2+-activated K+ channels from intracellular stores into the plasma membrane, although these two growth factors preferentially act on different intracellular pools. We have previously shown that actions of transforming growth factor-beta1 on ciliary neurons require activation of phosphoinositol 3-kinase and Akt, as well as a parallel cascade composed of the small GTPase Ras and a mitogen-activated protein kinase (extracellular signal-regulated kinase). In addition, we have shown that the actions of beta-neuregulin-1 require activation of phosphoinositol 3-kinase and the protein kinase Akt. Here we examine whether beta-neuregulin-1-evoked mobilization of large-conductance Ca2+-activated K+ channels also requires activation of a Ras-extracellular signal-regulated kinase signaling cascade. We observed that application of beta-neuregulin-1 caused a robust and MEK1/2-dependent increase in extracellular signal-regulated kinase diphosphorylation that indicates activation of this signaling cascade in ciliary ganglion neurons, similar to what we have previously observed for transforming growth factor-beta1. However, activation of this cascade is not necessary for beta-neuregulin-1-evoked mobilization because stimulation of macroscopic large-conductance Ca2+-activated K+ channels persisted in cells treated with the MEK1/2 inhibitors PD98059 or U0126, in cells over-expressing dominant-negative forms of extracellular signal-regulated kinase, and in cells treated with the Ras inhibitor FTI-277. These results indicate that the mechanisms that underlie beta-neuregulin-1 and transforming growth factor-beta1 mobilization of large-conductance Ca2+-activated K+ channels are only partly overlapping, possibly because they cause recruitment of spatially distinct signaling complexes.  相似文献   

5.
The types of Ca(2+)-dependent K(+) channel involved in the prolonged afterhyperpolarization (AHP) in a subgroup of sympathetic neurons have been investigated in guinea pig celiac ganglia in vitro. The conductance underlying the prolonged AHP (gKCa2) was reduced to a variable extent in 100 nM apamin, an antagonist of SK-type Ca(2+)-dependent K(+) channels, and by about 55% in 20 nM iberiotoxin, an antagonist of BK-type Ca(2+)-dependent K(+) channels. The reductions in gKCa2 amplitude by apamin and iberiotoxin were not additive, and a resistant component with an amplitude of nearly 50% of control remained. These data imply that, as well as apamin- and iberiotoxin-sensitive channels, other unknown Ca(2+)-dependent K(+) channels participate in gKCa2. The resistant component of gKCa2 was not abolished by 0.5-10 mM tetraethylammonium, 1 mM 4-aminopyridine, or 5 mM glibenclamide. We also investigated which voltage-gated channels admitted Ca(2+) for the generation of gKCa2. Blockade of Ca(2+) entry through L-type Ca(2+) channels has previously been shown to reduce gKCa2 by about 40%. Blockade of N-type Ca(2+) channels (with 100 nM omega-conotoxin GVIA) and P-type Ca(2+) channels (with 40 nM omega-agatoxin IVA) each reduced the amplitude of gKCa2 by about 35%. Thus Ca(2+) influx through multiple types of voltage-gated Ca(2+) channel can activate the intracellular mechanisms that generate gKCa2. The slow time course of gKCa2 may be explained if activation of multiple K(+) channels results from Ca(2+) influx triggering a kinetically invariant release of Ca(2+) from intracellular stores located close to the membrane.  相似文献   

6.
Huang H  Rao Y  Sun P  Gong LW 《Neuroscience letters》2002,323(2):141-145
Anterograde tracing techniques combined with postembedding immunocytochemical staining were used to determine the gamma amino butyric acid (GABA) content of pretectogeniculate (PT-LGN) terminals and their postsynaptic targets. The results provide evidence that PT-LGN terminals are GABAergic and that they contact GABAergic interneurons. These results corroborate previous anatomical studies and support the idea that the PT-LGN projection functions to disinhibit thalamocortical cells in the dorsal lateral geniculate nucleus.  相似文献   

7.
Wang W  Yu Y  Xu TL 《Neuroscience》2007,145(2):631-641
Acid-sensing ion channels (ASICs) are known to distribute throughout the nervous system and serve important roles in various physiological and pathological processes. However, the properties of ASICs in the hypothalamus, an important region of diencephalon, are little known. We herein used whole-cell patch-clamp recordings to characterize proton-induced cation currents in cultured hypothalamic neurons of the rat, and attributed these transient inward currents to ASICs based on their electrophysiological and pharmacological properties. We further examined the effects of Cu(2+), the third most abundant trace element, on ASICs in hypothalamic neurons. Our results showed that this divalent cation reversibly and concentration-dependently inhibited the amplitude of ASIC currents, and slowed down the desensitization of ASIC channels. Our results also displayed that Cu(2+) modulated ASICs independent of change in membrane potential and extracellular protons, suggesting a noncompetitive mechanism. Furthermore, micromolar concentration of Cu(2+) attenuated the acid-induced membrane depolarization. Taken together, our data demonstrate a modulatory effect of Cu(2+) on ASICs in native hypothalamic neurons and suggest a role of this endogenous metal ion in negatively modulating the increased neuronal membrane excitability caused by activation of ASICs.  相似文献   

8.
T-type Ca(2+) channels are low-voltage-activated Ca(2+) channels that control Ca(2+) entry in excitable cells during small depolarization above resting potentials. Using Ca(2+) imaging with a laser scanning confocal microscope we investigated the involvement of T-type Ca(2+) channels in IBMX/forskolin- and sparingly elevated extracellular K(+)-induced Ca(2+) transients in freshly isolated porcine olfactory receptor neurons (ORNs). In the presence of mibefradil (10microM) or Ni(2+) (100microM), the selective T-type Ca(2+) channel inhibitors, IBMX/forskolin-induced Ca(2+) transients in the soma were either strongly (>60%) inhibited or abolished completely. However, the Ca(2+) transients in the knob were only partially (<60%) inhibited. Ca(2+) transients induced by 30mM K(+) were also partially ( approximately 60%) inhibited at both the knob and soma. Furthermore, ORNs responded to as little as a 2.5mM increase in the extracellular K(+) concentration (7.5mM K(+)), and such responses were completely inhibited by mibefradil or Ni(2+). These results reveal functional expression of T-type Ca(2+) channels in porcine ORNs, and suggest a role for these channels in the spread Ca(2+) transients from the knob to the soma during activation of the cAMP cascade following odorant binding to G-protein-coupled receptors on the cilia/knob of ORNs.  相似文献   

9.
The adrenal gland contains resident macrophages, some of which lie adjacent to the catecholamine producing chromaffin cells. Because macrophages release a variety of secretory products, it is possible that paracrine signaling between these two cell types exists. Of particular interest is the potential paracrine modulation of voltage-gated calcium channels (I(Ca)), which are the main calcium influx pathway triggering catecholamine release from chromaffin cells. We report that prostaglandin E(2) (PGE(2)), one of the main signals produced by macrophages, inhibited I(Ca) in cultured bovine adrenal chromaffin cells. The inhibition is rapid, robust, and voltage dependent; the activation kinetics are slowed and inhibition is largely reversed by a large depolarizing prepulse, suggesting that the inhibition is mediated by a direct G-protein betagamma subunit interaction with the calcium channels. About half of the response to PGE(2) was sensitive to pertussis toxin (PTX) incubation, suggesting both PTX-sensitive and -insensitive G proteins were involved. We show that activation of macrophages by endotoxin rapidly (within minutes) releases a signal that inhibits I(Ca) in chromaffin cells. The inhibition is voltage dependent and partially PTX sensitive. PGE(2) is not responsible for this inhibition as blocking cyclooxygenase with ibuprofen did not prevent the production of the inhibitory signal by the macrophages. Nor did blocking the lipoxygenase pathway with nordihydroguaiaretic acid alter production of the inhibitory signal. Our results suggest that macrophages may modulate I(Ca) and catecholamine secretion by releasing PGE(2) and other chemical signal(s).  相似文献   

10.
A new family of chloride transport proteins has recently emerged. These proteins have extensive homology to a protein previously isolated from bovine tracheal epithelium that acts as a Ca(2+)-sensitive Cl(-) channel (CaCC) when heterologously expressed or when reconstituted into planar lipid bilayers. Several new members of this family have been identified in human, murine, and bovine epithelia, in addition to some other tissues, and are associated with Ca(2+)-sensitive conductive chloride transport when heterologously expressed in Xenopus oocytes or HEK 293 cells. The expressed current is also sensitive to inhibitors such as DIDS and niflumic acid. In addition, at least one family member acts as an endothelial cell adhesion molecule. This emerging family may underlie the Ca(2+)-mediated Cl(-) conductance responsible for rescue of the cystic fibrosis (CF) knockout mouse from significant airway disease.  相似文献   

11.
The contribution of subclasses of K(+) channels to the response of mammalian neurons to anoxia is not yet clear. We investigated the role of ATP-sensitive (K(ATP)) and Ca(2+)-activated K(+) currents (small conductance, SK, big conductance, BK) in mediating the effects of chemical anoxia by cyanide, as determined by electrophysiological analysis and fluorometric Ca(2+) measurements in dorsal vagal neurons of rat brainstem slices. The cyanide-evoked persistent outward current was abolished by the K(ATP) channel blocker tolbutamide, but not changed by the SK and BK channel blockers apamin or tetraethylammonium. The K(+) channel blockers also revealed that ongoing activation of K(ATP) and SK channels counteracts a tonic, spike-related rise in intracellular Ca(2+) ([Ca(2+)](i)) under normoxic conditions, but did not modify the rise of [Ca(2+)](i) associated with the cyanide-induced outward current. Cyanide depressed the SK channel-mediated afterhyperpolarizing current without changing the depolarization-induced [Ca(2+)](i) transient, but did not affect spike duration that is determined by BK channels. The afterhyperpolarizing current and the concomitant [Ca(2+)](i) rise were abolished by Ca(2+)-free superfusate that changed neither the cyanide-induced outward current nor the associated [Ca(2+)](i) increase. Intracellular BAPTA for Ca(2+) chelation blocked the afterhyperpolarizing current and the accompanying [Ca(2+)](i) increase, but had no effect on the cyanide-induced outward current although the associated [Ca(2+)](i) increase was noticeably attenuated. Reproducing the cyanide-evoked [Ca(2+)](i) transient with the Ca(2+) pump blocker cyclopiazonic acid did not evoke an outward current.Our results show that anoxia mediates a persistent hyperpolarization due to activation of K(ATP) channels, blocks SK channels and has no effect on BK channels, and that the anoxic rise of [Ca(2+)](i) does not interfere with the activity of these K(+) channels.  相似文献   

12.
Empson RM  Jefferys JG 《Neuroscience》2001,102(2):297-306
In CA3 neurons of disinhibited hippocampal slice cultures the slow afterhyperpolarisation, following spontaneous epileptiform burst events, was confirmed to be Ca(2+) dependent and mediated by K(+) ions. Apamin, a selective blocker of the SK channels responsible for part of the slow afterhyperpolarisation reduced, but did not abolish, the amplitude of the post-burst afterhyperpolarisation. The result was an increased excitability of individual CA3 cells and the whole CA3 network, as measured by burst duration and burst frequency. Increases in excitability could also be achieved by strongly buffering intracellular Ca(2+) or by minimising Ca(2+) influx into the cell, specifically through L-type (but not N-type) voltage operated Ca(2+) channels. Notably the L-type Ca(2+) channel antagonist, nifedipine, was more effective than apamin at reducing the post-burst afterhyperpolarisation. Nifedipine also caused a greater increase in network excitability as determined from measurements of burst duration and frequency from whole cell and extracellular recordings. N-methyl D-aspartate receptor activation contributed to the depolarisations associated with the epileptiform activity but Ca(2+) entry via this route did not contribute to the activation of the post-burst afterhyperpolarisation.We suggest that Ca(2+) entry through L-type channels during an epileptiform event is selectively coupled to both apamin-sensitive and -insensitive Ca(2+) activated K(+) channels. Our findings have implications for how the route of Ca(2+) entry and subsequent Ca(2+) dynamics can influence network excitability during epileptiform discharges.  相似文献   

13.
TGFbeta1 is a target-derived factor responsible for the developmental expression of large-conductance Ca(2+)-activated K(+) (K(Ca)) channels in ciliary neurons of the chick ciliary ganglion. The acute effects of TGFbeta1 on K(Ca) channels are mediated by posttranslational events and require activation of the MAP kinase Erk. Here we show that TGFbeta1 evokes robust phosphorylation of Akt/PKB, a protein kinase dependent on the products of phosphatidylinositol 3-OH kinase (PI3K). TGFbeta1-evoked stimulation of K(Ca) channels is blocked by the PI3K inhibitors wortmannin and LY294002. These drugs also inhibit TGFbeta1 effects on Akt/PKB phosphorylation but have no effect on TGFbeta1-evoked Erk activation. Application of the MEK1 inhibitor PD98059 blocked TGFbeta1 effects on Erk but had no effect on Akt/PKB phosphorylation. These results indicate that PI3K and Erk represent parallel signaling cascades activated by TGFbeta1 in ciliary neurons. The effects of TGFbeta1 on functional expression of K(Ca) are blocked by the microtubule inhibitors colchicine and nocodazole, by botulinum toxins A and E, and by brefeldin-A, an agent that disrupts the Golgi apparatus. These data indicate that translocation of a membrane protein, possibly Slowpoke (SLO), is required for the acute posttranslational effects of TGFbeta1 on K(Ca) channels. Confocal immunofluorescence studies with three different SLO antisera showed robust expression of SLO in multiple intracellular compartments of embryonic day 9-13 ciliary neurons, including the cell nucleus. These data suggest that TGFbeta1 evokes insertion of SLO channels into the plasma membrane as a result of signaling cascades that entail activation of Erk and PI3K.  相似文献   

14.
Whole-cell current recordings were used to examine the involvement of intracellular Ca2+ in the modulation of recombinant transient-receptor-potential like (TRPL) channels of Drosophila photoreceptor cells. TRPL was stably transfected in Chinese hamster ovary (CHO) cells and the expression of a calmodulin-binding protein with a molecular mass that corresponded to TRPL was demonstrated using calmodulin overlays. In cells expressing TRPL, ionic currents that were prominently outwardly rectifying were detected prior to activation of intracellular signalling pathways. The outwardly rectifying currents reversed close to 0 mV and did not occur after removal of permeant cations from the intracellular space. This suggests that TRPL forms non-selective cationic channels that appear to be constitutively active in mammalian cell lines. The TRPL channel currents were enhanced by manoeuvres that activate the phospholipase C (PLC) signalling pathway. These included activation of membrane receptors by thrombin, activation of G proteins by cell dialysis with guanosine 5'-O-(3-thiotriphosphate) (GTP[gamma-S]) and release of Ca2+ from intracellular stores by dialysis with inositol 1,4,5-trisphosphate (IP3). After complete depletion of Ca2+ stores, IP3 had no effect on TRPL currents, suggesting that IP3 does not activate recombinant TRPL channels directly. However, thapsigargin, which induces a rise of cytosolic Ca2+, increased TRPL channel currents. Cell dialysis with solutions containing various concentrations of Ca2+ enhanced TRPL currents in a dose-dependent manner (EC50=450 nM Ca2+). Conversely, chelation of cytosolic Ca2+ abolished TRPL channel currents. The present results indicate that the activity of recombinant TRPL channels expressed in mammalian cell lines is up-regulated by a rise of cytosolic Ca2+.  相似文献   

15.
The effect of intracellular Ca(2+) on the activity of the inwardly rectifying ATP-regulated K(+) channel with an inward conductance of about 90 pS was examined by using the patch-clamp technique in opossum kidney proximal tubule (OKP) cells. The activity of the inwardly rectifying K(+) channel rapidly declined with an application of ionomycin (1 microM) in the presence of 10(-6) M Ca(2+) in cell-attached patches. The application of 10 microM phorbor-12-myristate-acetate (PMA) with 10(-6) M Ca(2+) reduced the K(+) channel activity. Although the channel activity was not influenced by an increase of bath Ca(2+) from 10(-7.5) to 10(-6) M, the activity was inhibited by protein kinase C (PKC, 1 U/ml) with 10(-6) M Ca(2+) in inside-out patches. The inhibitory effect of Ca(2+) with ionomycin on the channel activity was diminished by the pretreatment with a specific PKC inhibitor, GF 109203X (5 microM), in cell-attached patches. By contrast, the application of Ca(2+)/calmodulin kinase II (CaMK II, 300 pM) dramatically increased this channel activity in inside-out patches. In cell-attached patches, the addition of both GF 109203X and cyclospolin A (5 microM), a potent inhibitor of protein phosphatase 2B (calcineurin), instead stimulated the K(+) channel activity with ionomycin and 10(-6) M Ca(2+). The addition of protein phosphatase 2B (calcineurin) (2 U/ml) to the bath with calmodulin (1 microM) and Ni(2+) (10 microM) to stimulate calcineurin inhibited the channel activity in inside-out patches. Furthermore, the inhibitory effect of PKC or calcineurin on this channel activity was abolished by a removal of Ca(2+) from bath solution. These results suggest that Ca(2+)-dependent inhibitory effect on the inwardly rectifying K(+) channel in OKP cells was mainly mediated by Ca(2+)-PKC-mediated phosphorylation, and that the Ca(2+)-calmodulin-dependent phosphorylation process may be counterbalanced by the Ca(2+)-calmodulin-dependent dephosphorylation process.  相似文献   

16.
On the basis of our previous observations which indicated that transforming growth factor β1 (TGFβ1) affects the gene expression and the release of luteinizing hormone-releasing hormone (LHRH) in GT1-1 cells, we have presently evaluated whether also TGFβ2 might be effective on these parameters. The data here reported show that also TGFβ2 is able to affect LHRH dynamics, and that this action presents a different kinetics than that reported by TGFβ1. In particular TGFβ2 is able to facilitate LHRH release and to decrease the mRNA levels of this decapeptide. The present data have also shown that, GT1-1 cells express the messengers for the two most important receptors of the TGFβ family, namely TGFβRI and TGFβRII and consequently represent a target for the action of the different isoforms of TGFβ. Since the two isoforms of TGFβ are produced and released from astrocytes, the present data add new support to the hypothesis that astrocytes participate in the control of LHRH secretion in a paracrine fashion.  相似文献   

17.
Large-conductance Ca(2+) and voltage-dependent K(+) channels (BK channels) in many tissues require high Ca(2+) concentrations for activation and therefore might be expected to be tightly coupled to Ca(2+) channels. However, in most cases, little is known about the relative organization of the BK channels and the Ca(2+) channels involved in their activation. We probed the nature of the organization of BK and Ca(2+) channels in rat chromaffin cells by manipulating Ca(2+) influx through Ca(2+) channels and by altering cellular Ca(2+) buffering using EGTA and bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid (BAPTA). The results were analyzed to determine the distance between Ca(2+) and BK channels that would be most consistent with the experimental data. Most BK channels are close enough to Ca(2+) channels to be resistant to the buffering action of millimolar of EGTA, but are far enough to be inhibited by BAPTA. Analysis of the EGTA/BAPTA results suggests that BK channels are at a distance of 50 to 160 nm from Ca(2+) channels. A model that assumes random distribution of Ca(2+) and BK channels fails to account for the observed [Ca(2+)](i) detected by BK channels, suggesting that a specific mechanism may exist to mediate the functional coupling between these channels. Importantly, the effects of EGTA and BAPTA cannot be explained by assuming a one-to-one coupling between Ca(2+) and BK channels. Rather, Ca(2+) influx through a number of Ca(2+) channels appears to act in concert to regulate the behavior of any individual BK channel. Thus differences in BK channel open probabilities may be explained by differences in the extent of Ca(2+) domain overlap at the sites of individual BK channels.  相似文献   

18.
Large-conductance Ca(2+)-activated K(+) (BK) channels regulate synaptic transmission by contributing to the repolarization phase of the action potential that invades the presynaptic terminal. BK channels are prone to activation under pathological conditions, such as brain ischemia and epilepsy. It is unclear if activation of these channels contributes to the depression of synaptic transmission observed in the early stage of Alzheimer's disease (AD). In this study, we recorded the field excitatory postsynaptic potentials (fEPSPs) in the hippocampus CA1 region of brain slices from 6 to 9 weeks (pre-plaque) TgCRND8 mice, a mouse model of Alzheimer's disease that harbors a double amyloid precursor mutation (KM670N/671L "Swedish" and V717F "Indiana"). Compared to age-matched controls, the fEPSPs in these animals are significantly depressed. This depression is largely mediated by the activation of presynaptic BK channels in the CA1 area. Both BK channel blockers (charybdotoxin and paxilline), and the fast binding calcium chelator, BAPTA-AM, enhance the fEPSP by deactivating the BK channels. Repetitive stimulation to the afferent pathway enhances fEPSP. This enhancement is more prominent when BK channel blockers are added in Tg slices, suggesting that repetitive stimulation further promotes BK channel activation in Tg slices. The potential candidates that mediate the activation of BK channels in these pre-plaque Alzheimer's disease model mice might involve impaired calcium homeostasis and AD related over-generation of reactive oxygen species.  相似文献   

19.
Prostaglandin E(2) (PGE(2)) inhibits pancreatic enzyme secretion and shows a protective action against pancreatitis. In this study, we tested the effects of PGE(2) on the slowly activating voltage-dependent K(+) channel current ( I(Ks)) and cholecystokinin (CCK)-induced oscillations of cytosolic [Ca(2+)] ([Ca(2+)](i)) in rat pancreatic acini (RPA). I(Ks) in RPA is reportedly augmented by both Ca(2+)- and cAMP-mediated secretagogues. PGE(2) (10(-7) M) decreased the amplitude of I(Ks), an effect that was more prominent following prior stimulation with secretin. The application of the membrane-permeable cAMP analogue 8-Br-cAMP prevented the effect of PGE(2) on I(Ks). The Ca(2+)-mediated augmentation of I(Ks) by ACh was unaffected by pretreatment with PGE(2). Using fura-2 fluorescence ratiometry to assess [Ca(2+)](i), CCK (相似文献   

20.
Influx of Ca(2+) and Na(+) ions during an action potential can strongly affect the repolarization and the fast afterhyperpolarization (fAHP) if a neuron expresses Ca(2+)- and Na(+)-dependent K(+) currents (K(Ca) and K(Na)). This applies to cockroach abdominal dorsal unpaired median neurons (DUMs). Here the rapid activation of K(Ca) depends mainly on the P/Q-type Ca(2+) current. Adipokinetic hormones (AKHs)-insect counterparts to mammalian glucagon-mobilize energy reserves but also modulate neuronal activity and lead to enhanced locomotor activity. Cockroach AKH I accelerates spiking and enhances the fAHP of octopaminergic DUM neurons, and it is generally held that enhanced release of the biogenic amine from these and other neurons may lead to general arousal. AKH I modulates the voltage-gated Na(+) and P/Q-type Ca(2+) current and the background Ca(2+) current. Upregulation of P/Q-type Ca(2+) current increases the K(Ca) current, whereas enhanced inactivation of Na(+) current decreases the K(Na) current. We quantified the hormone-induced changes in ion currents in terms of Hodgkin-Huxley models and simulated the resulting activity of DUM neurons. Upregulation of P/Q-type Ca(2+) and K(Ca) current enhanced the hyperpolarization but had a weak effect on spiking. Downregulation of Na(+) and K(Na) current decreased hyperpolarization and slightly accelerated spiking. Superposition of these modulations produced an increase in fAHP while the spike frequency remained unchanged. Only when the upregulation of the pacemaking Ca(2+) background current was included in the simulated modulation the model reproduced the experimentally observed AKH-I-induced changes. The possible physiological relevance of this dual effect is discussed in respect to transmitter release and synaptic integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号