首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
以聚酯多元醇、4,4’-二环己基甲烷二异氰酸酯和二羟甲基丙酸为原料,采用预聚物混合工艺合成水性聚氨酯分散体,研究了中和方式、乳化条件和扩链方式对乳液及其涂膜性能的影响,确定了最佳乳化条件、中和工艺和扩链方式。  相似文献   

2.
反应条件对水性聚氨酯预聚反应的影响   总被引:4,自引:0,他引:4  
李士杰  廖水姣  李建宗 《粘接》2001,22(3):11-12,18
以TDI、N210、DMPA为基本原料,用丙酮法合成了稳定的聚氨酯乳液(WPU)。探讨了反应温度、溶剂、催化剂及用量对预聚反应的影响。结果表明:以丙酮为溶剂,以二月桂酸二丁基锡为催化剂(用量0.03%),反应温度80℃最为适宜。  相似文献   

3.
4.
以不同离子型和不同HLB(亲水亲油平衡)值的外乳化剂作为试验对象,采用内乳化-外乳化法合成高固含量的WPU(水性聚氨酯)分散体。研究结果表明:当外乳化剂在预聚体乳化前加入且w(阴离子型外乳化剂)≤2%(相对于反应原料质量而言)时,可获得黏度适中、储存稳定、耐介质性能和力学性能较好的高固含量WPU。  相似文献   

5.
根据常用的6种氨合成催化剂的本征活性测定数据,用焦姆金动力学方程回归得到反应速率常数与温度的关系。利用所得反应速率常数,模拟了这6种氨合成催化剂在中型氮肥厂φ1000mm三套管氨合成塔的反应结果。从催化剂的使用温度来看,从A106、A109、A110-1、A110-2、ICI74-1到ZA-5最佳活性使用温度不断降低。  相似文献   

6.
采用丙酮法制备了复合薄膜用的水性聚氨酯(WPU)乳液胶粘剂,研究了催化剂用量对WPU反应速率及其性能的影响。研究结果表明,适量的催化剂能明显加快聚氨酯(PU)预聚体的反应速率;当催化剂质量分数为0.1%时,WPU乳液的粘度和复合薄膜的T型剥离强度最大,但WPU胶膜的玻璃化转变温度(Tg)降低,由未加催化剂时的-25.5℃降低到-29.1℃。  相似文献   

7.
8.
针对焦炭反应性及反应后强度测试规范性强,测试误差也较大的问题,探索了升温速率及反应温度对焦炭反应性及反应后强度的影响。实验结果表明,随着升温速率的不断的增大,焦炭的反应性在不断的减少,焦炭的反应后强度在不断的增大;小范围改变反应温度,仍对焦炭反应性及反应后强度产生比较显著的影响。升温速率越快,反应初期焦粒内部的温度低于1100℃的幅度就越大,即反应初期焦粒内部在低于1100℃条件下与二氧化碳反应的时间就越长。  相似文献   

9.
采用碱土金属催化剂C-1,C-2合成脂肪醇聚氧乙烯醚比用碱催化剂合成的产品具有较窄的分布和更强的乳化性能。  相似文献   

10.
概述了水性聚氨酯自乳化时的相反转过程,讨论了影响相反转的一些重要因素。  相似文献   

11.
木材加工用水性聚氨酯胶粘剂的研究   总被引:1,自引:0,他引:1  
为了获得稳定性较好的水性聚氨酯(WPU)胶粘剂,以丙酮为溶剂、聚醚(N210)为软段、二苯基甲烷-4,4′-二异氰酸酯(MDI)为硬段、二羟甲基丙酸(DMPA)为亲水性扩链剂、三乙胺(TEA)为成盐剂和聚乙烯醇(PVA)为增稠剂等,制备了环保型木材粘接用WPU胶粘剂。研究了MDI、N210、DMPA、TEA和PVA用量等对乳液稳定性、胶粘剂剪切强度及黏度的影响。结果表明:当n(MDI)∶n(N210)∶n(DMPA)∶n(TEA)=2.4∶1∶0.8∶0.64、w(PVA)=2.0%~3.0%时,可制得常温(20~30℃)存放90 d以上、剪切强度超过4.2 MPa的稳定WPU胶粘剂。  相似文献   

12.
有机硅改性水性聚氨酯乳液的制备及其性能研究   总被引:3,自引:1,他引:3  
以甲苯二异氰酸酯(TDI)、聚醚二元醇(N-220)、1,4-丁二醇(BDO)、二羟甲基丙酸(DMPA)和硅烷偶联剂(KH-550)等为主要原料,采用丙酮法合成了有机硅改性WPU(水性聚氨酯)乳液。结果表明:KH-550和DMPA的加料方式对WPU乳液稳定性影响较大;当w(DMPA)=3%~5%时,WPU乳液及其胶膜的综合性能较好。  相似文献   

13.
以聚己二酸丁二醇酯二醇(PBA3000)、异佛尔酮二异氰酸酯(IPDI)和2,2-二羟甲基丙酸(DMPA)为主要原料,合成了羧酸型水性聚氨酯(WPU)。结果表明:一步法和两步法制成的WPU分散液及其胶膜特性相近,但一步法制备工艺更加简单;随着DMPA含量不断增加,预聚过程中体系黏度和分散液电导率上升,WPU胶膜的拉伸强度、硬度和吸水率增大,断裂伸长率和分散液粒径(100 nm)减小;当n(PBA)∶n(DMPA)=2∶3时,R值越大,预聚过程中体系黏度越低,WPU胶膜的拉伸强度和硬度越大,而断裂伸长率和吸水率越小;当w(-COOH)=1.09%~2.37%时,WPU分散液的稳定性较好。  相似文献   

14.
水性聚氨酯(WPU)胶粘剂在耐水性、力学性能、粘接强度及热稳定性等方面不如溶剂型胶粘剂,故改性WPU势在必行。介绍了WPU胶粘剂的改性方法(包括改变多羟基化合物种类、调节离子中和程度、增加离子含量、形成互穿聚合物网络、选择适量的聚异氰酸酯固化剂和黏土浓度等),评述了WPU胶粘剂的国内外研究现状,指出了WPU胶粘剂的发展趋势。  相似文献   

15.
In this work, we developed a continuous preparation strategy for the production of high-solids-content waterborne polyurethane (WPU) emulsions via high-gravity-assisted emulsification in a rotating packed bed (RPB) reactor. By adjusting the experimental parameters and formula, WPU emulsions with a high solids content of 55% and a low viscosity were prepared. Preliminary applications of the high-solids-content WPU as a thermally insulating material were demonstrated. RPB emulsification is an economical and environmentally friendly production strategy because of the low energy consumption, short emulsification time, and effective devolatilization. This study demonstrated an effective method for preparation of high-solids-content WPU, moving toward commercialization and industrialization.  相似文献   

16.
白慧英  赵振河  刘宗旭 《粘接》2013,(11):53-56
以异佛尔酮二异氰酸酯(IPDI)、聚多元醇为主要原料,以异丙醇为溶剂,合成了反应型水性聚氨酯整理剂,既保持了聚氨酯的弹性,又具有极好的反应活性,可以赋予织物各种功能,提高纺织品的附加价值。介绍了该类整理剂在纯棉针织物抗起毛起球整理中的应用。  相似文献   

17.
通过对反应工艺条件的研究,得出了SANC-08催化剂实验室的最佳工艺条件:反应温度(425~445) ℃,压力(0.082~0.14) MPa,n(空气)∶n(丙烯)=9.0~10.0、n(氨气)∶n(丙烯)=1.15~1.30、空速(0.060~0.090) h-1。催化剂在较宽的工艺条件范围,具有丙烯腈收率高、氨转化率高、丙烯选择性好、反应温度低且可在低n(空气)∶n(丙烯)和高空速下运行等特点。  相似文献   

18.
以异佛尔酮二异氰酸酯(IPDI)和聚醚二醇(PPG)为主要原料、二羟甲基丙酸(DMPA)为亲水扩链剂和乙二胺(EDA)为小分子扩链剂,采用预聚体分散法制备出一种水性聚氨酯(WPU)乳液。考察了n(-NCO)∶n(-OH)比例、EDA扩链方式等对WPU稳定性、玻璃化转变温度、力学性能和耐水性等影响。结果表明:将EDA先溶于水中,采用乳化与扩链同时进行的工艺,并且当n(-NCO)∶n(-OH)=1.5∶1时,WPU乳液稳定性好、粒径(14 nm)较小且分布较窄,WPU胶膜的力学性能(拉伸强度为3.683 MPa、断裂伸长率为347%)和耐水性(吸水率为19.7%)俱佳。  相似文献   

19.
以聚酯多元醇、二羟甲基丙酸(DMPA)、甲苯二异氰酸酯(TDI)和1,4-丁二醇(BDO)为主要原料,合成了阴离子型WPU(水性聚氨酯),并着重探讨了聚氨酯(PU)分子链中硬段含量对其性能的影响。结果表明:随着PU分子链中硬段含量的不断增加,硬段的Tg(玻璃化转变温度)上升,但软段的Tg呈先升后降态势,WPU的外观由半透明泛蓝光转变为乳白色不透明(稳定性变差),并且WPU的黏度、耐水性和T型剥离强度均呈先升后降态势;当WPU中w(硬段)=22.79%时,相应WPU的综合性能相对最好,用其胶接聚酰胺(PA)/聚丙烯(PP)复合薄膜的T型剥离强度达到0.488 kN/m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号