首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过原位聚合法制备了以聚甲基丙烯酸甲酯为基体,与镁铁双氢氧化物具有良好相容性的层离型纳米复合材料。实验结果表明,MgFe-LDH的引入显著提高了聚合物的热解温度,两者间的相互作用和片层的物理阻隔都起到了作用。采用Flynn-Wall-Ozawa和Friedman法对体系进行热动力学分析,两种计算结果相互验证,表明纳米复合材料的热解表观活化能较纯样明显增大,热分解过程受到阻碍。这种热稳定化作用不仅与片层的物理阻隔有关,也应当与热解反应的能量阻隔有关。  相似文献   

2.
The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites.  相似文献   

3.
Graphite oxide (GO)/poly(methyl methacrylate) (PMMA) nanocomposites were prepared by a novel method utilizing macroazoinitiator (MAI). The MAI, which has a poly(ethylene oxide) (PEO) segment, was intercalated between the lamellae of GO to induce the inter-gallery polymerization of methyl methacrylate (MMA) and exfoliate the GO. The morphological, conductivity, thermal, mechanical and rheological properties of these nanocomposites were examined and compared with those of intercalated nanocomposites prepared by polymerization with the normal radical initiator, 2,2′-azobisisobutyronitrile. The improvement in conductivity by GO was more evident in exfoliated nanocomposites compared to that of intercalated nanocomposites. For example, a conductivity of 1.78 × 10−7 S/cm was attained in the exfoliated nanocomposite prepared with 2.5 parts GO per 100 parts MMA, which was about 50-fold higher than that of the intercalated nanocomposite. The thermal, mechanical and rheological properties also indicate that thin GO with a high aspect ratio is finely dispersed and effectively reinforced the PMMA matrix in both exfoliated and intercalated nanocomposites.  相似文献   

4.
Poly(methyl methacrylate) (PMMA)/graphene nanocomposites were prepared by in situ emulsion polymerization. Raman and Fourier transform infrared spectra showed that PMMA polymer contained partially reduced graphite oxide. Dynamic mechanical analysis and differential scanning calorimetry analysis showed that graphene in the PMMA matrix acted as reinforcing filler; it enhanced the storage moduli and glass transition temperatures of the nanocomposites. Thermogravimetric analysis showed that the thermal stability of the nanocomposites increased by ca. 35 °C. The electrical conductivity of nanocomposite with 3 wt.% graphite oxide was 1.5 S m−1 at room temperature.  相似文献   

5.
Poly(methyl methacrylate) (PMMA)/lanthanum hydroxide (La(OH)3) nanowire nanocomposites were prepared by in-situ polymerization of methyl methacrylate (MMA) in the DMF solution. The improvement in thermal stability of the nanocomposites is remarkable with low inorganic nanowires content. The experimental results indicate ultimate network formation for the nanocomposites is possibly through interaction between La3+ and MMA monomer during polymerization. The network induces the mobility restriction of polymer chains and greatly prevents polymer chains from decomposition. The characteristic of one-dimensional nanowires used here may play a key role in the formation of the “cross-link” network and decision of the low content of nanowires addition in the polymer matrix.  相似文献   

6.
Polyaniline (PANI) nanorods/Ce(OH)3-Pr2O3/montmorillonite (MMT) nanocomposites were synthesized via in situ polymerization of aniline monomer through reverse micelle template (RMT) in the presence of montmorillonite and Ce(OH)3, Pr2O3. In the experiment, sulphosalicylic acid was used as dopant, aniline was designated as oil phase and the aqueous solution comprising Ce3+ and Pr3+ as water phase. The nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy and thermogravimetry-differential thermal analysis (TG-DTA). The results showed that PANI nanorods were synthesized in the interlayer spaces of MMT with uniform spherical rare earth nanoparticles. The thermal stability of the nanocomposites prepared was enhanced drastically compared with pure polyaniline.  相似文献   

7.
Nanocomposites of poly(methyl methacrylate) (PMMA) containing various multi-walled carbon nanotubes (MWCNT) contents were prepared using melt mixing. Several techniques were employed to study the influence of the MWCNT addition on the thermal, mechanical, electrical and dielectric properties of the PMMA matrix. The electrical percolation threshold (pc) was found to be 0.5 vol.% by performing AC and DC conductivity measurements. Significantly high conductivity levels (σdc) were achieved: σdc exceeds 10−2 S/cm already at 1.1 vol.%, the criterion for EMI shielding (σdc > 10−1 S/cm) is fulfilled at 2.9 vol.%, and the highest loaded sample (5.2 vol.%) gave a maximum value of 0.5 S/cm. Dielectric relaxation spectroscopy measurements in broad frequency (10−1−106 Hz) and temperature ranges (−150 to 170 °C) indicated weak polymer-filler interactions, in consistency with differential scanning calorimetry and dynamic-mechanical analysis findings. Weak polymer-filler interactions and absence of crystallinity facilitate the achievement of high conductivity levels in the nanocomposites.  相似文献   

8.
This study aims to assess the nanofiber directionality effects on optomechanical properties of a widely used transparent thermoplastic poly(methyl methacrylate) (PMMA). Aligned fiber-hybrid mats consisted of nylon-6 (PA-6) nanofibers and PMMA microfibers are prepared using a self-blending co-electrospinning method, followed by hot press molding to fabricate into transparent nanocomposites. Effects of nanofiber orientation degree in two orthogonal directions and loading fraction on the optomechanical behavior of the nanocomposites are examined. Optical transmittance differences parallel and perpendicular to the nanofibers’ orientation are found to vary in a range of 3.9–5.4% at 589 nm, and strong mechanical anisotropy is observed with the 1% PA-6/PMMA nanocomposites. A maximal of 3% PA-6 nanofiber loading maintains the nanocomposite high transmittance (>75%) with improved strength and toughness along the nanofiber axis. This study reveals evident anisotropic optomechanical properties of transparent nanocomposites, and highlights the great designability of transparent nanocomposites by using aligned nanofibers as the designing elements.  相似文献   

9.
Graphene nanoplatelet (GNP) was incorporated into poly(vinylidene fluoride) (PVDF) and PVDF/poly(methyl methacrylate) (PMMA) blend to achieve binary and ternary nanocomposites. GNP was more randomly dispersed in binary composites compared with ternary composites. GNP exhibited higher nucleation efficiency for PVDF crystallization in ternary composites than in binary composites. GNP addition induced PVDF crystals with higher stability; however, PMMA imparted opposite effect. The binary composite exhibited lower thermal expansion value than PVDF; the value further declined (up to 28.5% drop) in the ternary composites. The storage modulus of binary and ternary composites increased to 23.1% and 53.9% (at 25 °C), respectively, compared with PVDF. Electrical percolation threshold between 1 phr and 2 phr GNP loading was identified for the two composite systems; the ternary composites exhibited lower electrical resistivity at identical GNP loadings. Rheological data confirmed that the formation of GNP (pseudo)network structure was assisted in the ternary system.  相似文献   

10.
Luminescent nanocomposite of epoxy filled with Er3+-doped yttria-stabilized zirconia (7YSZ) is prepared with their luminescence spectra measured in the temperature range 123–423 K. Fluorescence intensity ratio (FIR) of the two Er3+ emissions is also obtained in the same temperature range. Er–7YSZ/epoxy nanocomposites exhibited higher sensitivity of 0.18%/K as compared with the bare Er–7YSZ particles. Luminescence thermometry is demonstrated by using the nanocomposites as temperature sensitive paint (TSP) with a resolution of 1 K. The advantage of FIR technique combined with the excellent thermal stability of epoxy matrix makes the Er–7YSZ/epoxy nanocomposites viable as temperature sensitive paint for aerodynamic applications.  相似文献   

11.
The novel nanocomposites derived from waterborne polyurethane (WPU)/Attapulgite (AT) nanocomposites have been successfully synthesized by in situ polymerization progress. AT functionalized by chemical modification were incorporated as a crosslinker in prepolymer. The chemical structures, morphology, thermal behavior, and mechanical properties of the WPU/AT nanocomposites were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile testing respectively. The experimental results indicated that the organically modified attapulgites were homogeneously dispersed in the WPU and resulted in an improvement of thermal stability, tensile strength and elongation at break of WPU/AT nanocomposites.  相似文献   

12.
New poly(ether–amide)/layered silicate nanocomposites (PEAN) containing dibenzalacetone and cinnamoyl moieties were prepared via solution intercalation technique from poly(ether–amide) 6 and organo-MMT in a solution of N,N-dimethylacetamide (DMAc). New dicarboxylic acid 4 was synthesis from two step reactions. At first 4,4′-bis(1,4-diphenoxybutane) dialdehyde 3 was synthesized from 1,4-dibromobutane and 4-hydroxybenzaldehyde, then solvent free reaction using to synthesis 4,4′-bis(1,4-diphenoxybutane) diacrylic acid from dialdehyde 3 and malonic acid. Poly(ether–amide) (PEA) chains were synthesized from 4,4′-bis(1,4-diphenoxybutane)diacrylic acid 4 and 2,5-bis(4-aminobenzylidene)cyclopentanone 5 via a direct polycondensation reaction. The synthesized PEA was characterized by Fourier transform infrared spectra (FTIR), nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC) and UV–Vis spectroscopy. The distribution of organoclay and nanostructure of the nanocomposites were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. The thermal properties and flammability of the nanocomposites were investigated by thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and microscale combustion calorimeter (MCC). In the presence of organoclay shows a good effect on improving the flame retardancy of the PEA, reflecting the decrease in heat release rate (HRR) and the total heat release (THR) of the nanocomposites, while the thermal stability of nanocomposites only changed slightly compared to the neat polymer. With the increase of the loading of organoclay, the nanocomposites showed improved flame retardancy and higher char residues.  相似文献   

13.
The present study addresses the synthesis and characterization of polymethyl methacrylate (PMMA)/graphene oxide (GO) and PMMA/GO?+?TiO2 nanocomposites for potential application as dental materials. PMMA/0.0025?wt% GO and PMMA/0.0025 wt%GO?+?1?wt% TiO2 were processed using twin-screw extrusion including melt compounding. The mechanical, thermal, and microstructural behaviors of nanocomposites were determined and compared with pure PMMA. The results of this work revealed that PMMA nanocomposites are potential candidates as dental materials.  相似文献   

14.
Three novel organic–inorganic hybrid molecules, layered zirconium phosphates or phosphonates, were synthesized. To study the effects of organic chain length of them on the structure and properties of polymer nanocomposites, the polyurethane/α-zirconium phosphate (PU/ZrP), polyurethane/zirconium 2-aminoethylphosphonate (PU/ZrAEP) and polyurethane/zirconium 2-(2-(2-(2-aminoethylamino)ethylamino)ethylamino) ethylphosphonate (PU/Zr(AE)4P) nanocomposites were prepared, and characterized by Fourier Transform Infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and tensile testing. It was revealed that morphological, mechanical, and thermal properties of these nanocomposites were strongly dependent on the organic chain length of the layered zirconium phosphonates. The results showed that the fillers with longer chain length exhibited better dispersion in the PU matrix. As expected, the mechanical properties and water resistance were improved with the increasing of organic chain length of fillers, which attributed to better interfacial adhesion between fillers and PU matrix.  相似文献   

15.
A novel nanocomposite in which CdS nanoparticles were embedded in poly(N-isopropylacrylamide) (P(N-iPAAm)) matrix have been fabricated. The particle size of CdS nanoparticles ranged from 10 nm to 40 nm could be adjusted with the varying of the inorganic contents. The nanocomposites have been characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), thermo-gravimetric analysis (TGA), high resolution transmission electron microscope (HRTEM), UV-vis absorption and fluorescence spectra (FLS) measurements. The cell volume of CdS nanoparticles embedded in polymer matrix was smaller than the standard value and the nanocomposites with 12.0% inorganic content showed a good fluorescence property.  相似文献   

16.
Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods: solution blending and solution blending + melt compounding. The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods. SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all of the PVC/MMT nanocomposites. Thermogravimetric analysis revealed that PVC/Na-MMT nanocomposites have better thermal stability than PVC/OMMT nanocomposites and PVC. In general, PVC/MMT nanocomposites prepared by solution blending + melt compounding revealed improved thermal properties compared to PVC/MMT nanocomposites prepared by solution blending. Vicat tests revealed a significant decrease in Vicat softening temperature of PVC/MMT nanocomposites prepared by solution blending + melt compounding compared to unfilled PVC.  相似文献   

17.
Dodecyl sulfate (DS), one kind of sulfate anion, was intercalated in the interlayer space between CoAl layered double hydroxide (CoAl-LDH) layers, and then polyurethane (PU) based nanocomposites were prepared by in situ intercalation polymerization with different amounts of the organo-modified CoAl-LDH. An exfoliated dispersion of CoAl-LDH layers in PU matrix was verified by the disappearance of the (0 0 3) reflection of the XRD results when the LDH loading was less than 2.0 wt%. Tensile testing indicated that excellent mechanical properties of PU/LDH nanocomposites were achieved. The weak alkaline catalysis of DS to polyurethane chains, combined with the dehydration and structural degradation of the LDH below 300 °C, accounted for the process of proceeded degradation as shown in TGA results. The real-time FTIR revealed that the as-prepared nanocomposites had a slower thermo-oxidative rate than neat PU from 160 °C to 340 °C, probably due to the barrier effect of LDH layers. These results suggested potential applications of CoAl-LDH as a promising flame retardant in PUs.  相似文献   

18.
Carbon nanofibers dispersed β-SiC (CNFs/SiC) nanocomposites were prepared by hot-pressing via a transient eutectic phase route at 1900 °C for 1 h under 20 MPa in Ar. The effects of additional CNFs content between 1 and 10 wt.% were investigated, based on densification, microstructure, thermal and mechanical properties. The CNFs/SiC nanocomposites by the CNFs contents below 5 wt.% exhibited excellent relative densities over 98% with well dispersed CNFs. However, the CNFs/SiC nanocomposites containing the CNFs of 10 wt.% possessed a relative density of 92%, accompanying CNFs agglomerates and many pores located inside the agglomerates. The three point bending strength gradually decreased with the increase of CNFs content, but the indentation fracture toughness increased to 5.7 MPa m1/2 by the CNFs content of 5 wt.%. The thermal conductivity was enchanced with the increase of CNFs content and represented a maximum value of 80 W/mK at the CNFs content of 5 wt.%.  相似文献   

19.
GdOF:Ce, Tb nanoparticles and their poly (methyl methacrylate) (PMMA) nanocomposites have been successfully prepared by a thermolysis route and thermal polymerization of methyl methacrylate (MMA) monomer, respectively. The obtained nanoparticles and nanocomposites are characterized by XRD, EDS, TEM, FTIR, TGA, UV–Vis and PL spectrum. The as-synthesized transparent GdOF:Ce, Tb/PMMA nanocomposites exhibit green photoluminescence under the irradiation of 254 nm UV lamp due to the incorporation of luminescent GdOF:Ce, Tb nanoparticles into the PMMA matrix. The present route would provide a general strategy to prepare other functional nanocomposites.  相似文献   

20.
Poly(methyl methacrylate)/expanded graphite (PMMA/EG) composites were prepared by the incorporation of EG in various proportions (1%, 2%, 3%, 4% and 5%) with PMMA by in situ polymerisation technique. The polymer composites were characterised by ultraviolet–visible (UV–vis) and Fourier transform infra-red spectroscopies. The structural property of PMMA/EG nanocomposites was studied by X-ray diffraction. The scanning electron microscopy and transmission electron microscopy of synthesised composites were taken in order to study their morphological properties. The conductivity of composites was measured as function of EG concentration. It was found that conductivity of composites gradually increased with the increase in EG loading. Oxygen permeability of PMMA/EG nanocomposites was calculated and it was found that the property was reduced substantially with rise of EG proportion. The thermal stability of PMMA/EG nanocomposites was improved by dispersion of EG with PMMA matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号