首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
原油中芳香硫化合物形态分布的研究   总被引:1,自引:0,他引:1  
曾小岚  刘君  刘建华  杨永坛 《分析化学》2006,34(11):1546-1550
建立了原油中多环芳香硫化合物形态分布的研究方法。采用氯化钯/硅胶配位交换色谱分离原油中的芳香硫化合物,并用气相色谱/质谱分析、气相色谱-硫化学发光检测法结合色谱保留指数,鉴定出原油中的100多个多环芳香硫化物,包括含烷基取代基的苯并噻吩和二苯并噻吩类硫化物。定量分析表明,二苯并噻吩类化合物的含量占芳香硫化合物总量的91%左右。该方法可用于不同来源的原油中芳香硫化合物的形态分布研究。  相似文献   

2.
The analysis of sulfur aromatics in vacuum gas oils (VGO) distilled from an Iranian light crude oil is discussed. The VGOs were fractionated into three boiling ranges, 390–460, 460–520, and 520–550 °C, and were analyzed using liquid chromatographic separation on a Pd(II)-bonded stationary phase followed by identification with electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). It was possible to detect a large number of thiophenes, including a substantial number of isomers, in the three VGO fractions. Separation on the palladium phase and inclusion of sulfur-selective derivatization makes electrospray ionization of these nonpolar compounds possible. An elemental composition can be assigned to a large number of S1 compounds without ambiguity in the presence of abundant hydrocarbons. With an increase in boiling temperature, an increase in the size of the aromatic system and the number of side chain carbon atoms was observed. In addition, the masses of higher magnitude shifted toward larger aromatic systems with an increase in boiling range. A comparison of FT-ICR MS and comprehensive gas chromatography is also given. This work is dedicated to Prof. B. Krebs on the occasion of his 70th birthday.  相似文献   

3.
A simple and rapid solid‐phase microextraction approach for the isolation of polycyclic aromatic sulfur heterocycles from the aromatic fraction of crude oil is described. 8‐Hydroxyquinoline silica gel impregnated with palladium chloride was used as a sorbent material for extraction. Operational parameters of the extraction solvents have been evaluated and optimized. Benzothiophene, dibenzothiophene, and benzo[b]naphtho[1,2‐d]thiophene and their C1–C4 alkyl derivatives were identified and quantified by GC–MS. Under optimum conditions, the limits of detection for benzothiophene, dibenzothiophene, and benzo[b]naphtho[1,2‐d]thiophene were 0.277, 0.193, and 0.597 μg/g oil, respectively. The recoveries for the polycyclic aromatic sulfur heterocycles ranged from 81.5 to 92.1%, and the linear dynamic range was from 10 to 1000 ng/mL. The developed methodology was tested in the characterization of crude oil samples collected at the DY, SZ, ZH, and HC petroleum oil fields of the Bohai Sea. The results proved that SPE coupled with GC–MS is a promising tool for the quantitative analysis of polycyclic aromatic sulfur heterocycles in crude oils, especially for oil samples with low concentrations of polycyclic aromatic sulfur heterocycles.  相似文献   

4.
Separation of polycyclic aromatic sulfur heterocycles among themselves and also from interferents in petrochemical matrices is a challenging task because of their low concentration, matrix complexity, and also due to the presence of polyaromatic hydrocarbons, as they present similar physico‐chemical properties. Therefore, the objective of this work was preparation, characterization, and application of a stationary phase for separation of these compounds in a heavy gas oil sample and their identification by comprehensive two‐dimensional gas chromatography. The stationary phase was prepared by grafting mercaptopropyltrimethoxisilane onto a silica surface, followed by palladium(II) chloride immobilization. Elemental analysis, thermogravimetry, nitrogen adsorption‐desorption isotherms, infrared analysis, and scanning electron microscopy were performed to characterize this solid phase. Sulfur compounds were separated in an open column packed with the stationary phase and analyzed by comprehensive two‐dimensional gas chromatography coupled to time‐of‐flight mass spectrometric detection. The number of compounds tentatively identified was 314 and their classes were thiophenes, benzotiophenes, dibenzothiophenes, naphthothiophenes, benzonaphthothiophenes, and dinaphthothiophenes. Separation among sulfur compounds and polyaromatic hydrocarbons was successful, which is a difficult goal to achieve with the traditionally employed solid phases. Some recalcitrant compounds (dibenzothiophenes with substituents of two and four carbons) were fully separated and tentatively identified.  相似文献   

5.
Crude oils are the most complex mixtures known and every speciation method relies on a simplification of their complexity. Argentation chromatography is shown to be superior to traditional liquid chromatographic ways of separating aromatic compounds based on the number of aromatic carbon atoms. A silver(I) mercaptopropano silica gel allows an efficient group separation of polycyclic aromatic compounds to be achieved. The usefulness of this phase is demonstrated for SRM 1582 Wilmington crude oil and a diesel fuel. Furthermore, the phase can also be used for semi-preparative purposes to collect fractions for further analysis with high resolution mass spectrometry. Orbitrap mass spectra are obtained here for the polycyclic aromatic sulfur heterocycles and it is demonstrated that they can contain one to five naphtheno rings.  相似文献   

6.
宋春侠  王威  刘泽龙  刘颖荣  蔡新恒 《色谱》2019,37(7):750-758
基于氯化钯配位交换色谱柱和氨基键合正相色谱柱,利用自动阀切换系统,构建了在线二维液相色谱分离平台。通过优化液相色谱分离条件,实现减压蜡油样品中含硫芳烃的在线富集与多环芳烃的环数分离。利用傅里叶变换离子回旋共振质谱对分离后的含硫芳烃和芳烃组分进行分子水平表征,得到更为详细的化合物类型与碳数分布信息。根据计算得到的平均结构信息,可以提供分离后组分典型的分子结构式,并对芳环结构和侧链位置进行了推测。建立的分析表征方法可以加深对重馏分油中含硫芳烃化合物的分子水平认识,为重油加工过程的原料选择与工艺条件优化提供技术支持。  相似文献   

7.
The main objective of this study is to develop a methodology for sulfur compounds speciation using two-dimensional gas chromatography coupled with a flame ionization detector and sulfur chemiluminescence detectors. The methodology enhances the ability to detect and quantify the refractory sulfur in petroleum distillates, and it was utilized to screen the molecular differences between distillates of two Kuwaiti heavy crude oils from different reservoirs but with similar physical properties. Despite the similarity in the physical properties, the detailed comparative analysis indicated significant differences in molecular composition, which suggests substantial differences in crude oil processability based on the reactivity of the detected compounds. The distillates that have been considered in this study include heavy naphtha, kerosene, and gas oil. The compositional differences between the distillates were observed using the two-dimensional gas chromatography system with an in-house developed method. This method groups the sulfur compounds into thiols, benzothiophenes (BTs), and dibenzothiophene (DBTs), and it can handle any atmospheric distillate up 365 °C. Furthermore, the method includes the possibility of identifying and quantifying a total number of 44 sulfur species, which covers the previously mentioned sulfur groups.  相似文献   

8.
Retention indices of standard organic compounds of environmental interest were determined by gas chromatography/mass spectrometry, using a DB-5 fused-silica capillary column. Retention indices are useful references for tentative compound identification by gas chromatography, or confirmation by gas chromatography/mass spectrometry. They provide elution order for isomers that might be indistinguishable based on mass spectra. Modified Kovats and Lee retention indices are given for polycyclic aromatic hydrocarbons; sulfur heterocycles; nitrogen heterocycles; aromatic amines; oxygen heterocycles; phenols; alcohols; ketones; alkanes; nitriles; and methylesters of fatty, dicarboxylic, and aromatic acids for comparison and reference. Retention index values for heterocycles by gas chromatography/mass spectrometry are comparable with gas chromatography values previously reported.  相似文献   

9.
The separation of highly alkylated polycyclic aromatic compounds according to the size of their aromatic system is investigated using the polycyclic aromatic sulfur heterocycles in vacuum gas oil. A large number of reference compounds containing several parent ring systems and different alkylation patterns were first investigated to characterize the retention of polycyclic aromatic compounds likely to occur in high-boiling petroleum samples. A beta-cyclodextrin phase, Merck ChiraDex, was found to be more suitable than chemically bonded aminopropanosilane and tetrachlorophthalimide in normal-phase HPLC with respect to a combination of selectivity towards the number of aromatic double bonds and degree of influence of the alkyl groups of the aromatic compounds. Finally the preseparated polycyclic aromatic sulfur heterocycles from a vacuum gas oil were fractionated according to the number of condensed aromatic rings on the ChiraDex phase and were characterized by Fourier transform ion cyclotron resonance mass spectrometry.  相似文献   

10.
SRM 1597 Complex Mixture of Polycyclic Aromatic Hydrocarbons from Coal Tar, originally issued in 1987, was recently reanalyzed and reissued as SRM 1597a with 34 certified, 46 reference, and 12 information concentrations (as mass fractions) for polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic sulfur heterocycles (PASHs) including methyl-substituted PAHs and PASHs. The certified and reference concentrations (as mass fractions) were based on results of analyses of the coal tar material using multiple analytical techniques including gas chromatography/mass spectrometry on four different stationary phases and reversed-phase liquid chromatography. SRM 1597a is currently the most extensively characterized SRM for PAHs and PASHs.  相似文献   

11.
We present the results of investigations on the possibility of the application of the asphaltene fraction isolated from the oxidized residue from vacuum distillation of crude oil as a stationary phase for gas chromatography. The results of the investigation revealed that the asphaltene stationary phases can find use for the separation of a wide range of volatile organic compounds. The experimental values of Rohrschneider/McReynolds constants characterize the asphaltenes as stationary phases of medium polarity and selectivity similar to commercially available phases based on alkyl phthalates. Isolation of asphaltenes from the material obtained under controlled process conditions allows the production of a stationary phase having reproducible sorption properties and chromatographic columns having the same selectivity. Unique selectivity and high thermal stability make asphaltenes attractive as a material for stationary phases for gas chromatography. A low production cost from a readily available raw material (oxidized petroleum bitumens) is an important economic factor in case of application of the asphaltene stationary phases for preparative and process separations.  相似文献   

12.
In order to cope with the increasing demand for gasoline and the need to reduce environmental impact for sustainable development, refineries have installed refining technology by introducing cracking, reforming, isomerization and alkylation. The standard EN 228: 2004 outlines the specification that gasoline, deriving from the blend of several fractions, must have for use in modem piston engines. Naphtha is one of the products from distilling crude oil that can be used as starting material in the reforming process whose derivatives, which are a fraction of gasoline, depend on the composition of the naphtha. Knowledge of the naphtha composition thus enables to provide the final composition of the products of reforming, the efficiency of the plant and also provides information about the crude oil used. In this paper some naphtha samples were analysed by multidimensional gas chromatography. This technique allows in a single analysis a good separation of the hydrocarbon types and within each hydrocarbon type a good carbon number separation.  相似文献   

13.
Zhang T  Liang Y  Li B  Cui H  Huang L  Guo F  Zhao C 《Annali di chimica》2004,94(11):783-794
A universal method was established for the systematically structural identification of nitrogen-containing compounds in crude oils. Pre-fractionation of the non-hydrocarbons in a crude oil sample into 7 fractions was performed by di-adsorption column chromatography using neutral aluminum oxide and silica gel; subsequent high-resolution separation of individual components was achieved by using capillary column gas chromatography, and compound types were detected by mass spectrometer. The two-dimensional data from the compounds in the fractions were further resolved by a chemometric method to obtained the deconvoluted chromatogram and mass spectrum of every compound, and then, the nitrogen-containing compounds were identified in combination with the retention indices. This method could relieve the difficulty of classical analysis in identifying those species with very low contents or incompletely separation, particularly in the cases where the authentic standards were not available for addition into the unknown samples in order to reveal what indeed existed in them. The structures of 168 nitrogen-containing compounds in a crude oil sample were determined by this method with satisfactory results.  相似文献   

14.
This paper reports an analytical method for separating, identifying, and quantifying sulfur-containing compounds in crude oil fraction (IBP-360 degrees C) samples based on comprehensive two-dimensional gas chromatography coupled with a sulfur chemiluminescence detector. Various sulfur-containing compounds and their groups were analyzed with one direct injection. 3620 peaks were detected including 1722 thiols/thioethers/ disulfides/1-ring thiophenes, 953 benzothiophenes, 704 dibenzothiophenes, and 241 benzonaphthothiophenes. The target sulfur compounds and their groups were identified based on the group separation feature and structured retention of comprehensive two-dimensional gas chromatography as well as standard substances. The quantitative analysis of major sulfur-containing compounds and total sulfur was based on the linear response of the sulfur chemiluminescence detector using the internal standard method. The sulfur contents of target sulfur compounds and their groups in 4 crude oil fractions were also determined. The recoveries for standard sulfur-containing compounds were in the range of 90-102%. The quantitative result of total sulfur in the Oman crude oil fraction sample was compared with those from ASTM D 4294 standard method (total S by X-ray fluorescence spectrometry), the relative deviation (RD%) was 4.2% and the precision of the method satisfactory.  相似文献   

15.
A multidimensional method providing the composition of a heavy naphtha in paraffins, isoparaffins, olefins, naphthenes, and aromatics (PIONA) in the C8-C14 range is presented. The analytical set-up consists in a silver modified silica olefin trap on-line coupled to comprehensive two-dimensional gas chromatography (GC x GC). In this configuration, hydrocarbons are separated, in gaseous state, in two fractions, saturate and unsaturate, each fraction being subsequently analysed by GC or by GC x GC. The resolution between saturates and olefins was found to be improved compared to a single GC x GC run. The characterisation of the olefin trap highlights the benefits and the limits related to the use of that stationary phase as a double bond selective fractionation medium.  相似文献   

16.
A method is described for the systemic identification and quantitative analysis of nitrogen-containing compounds and other non-hydrocarbons in crude oils. The pre-fractionation of a crude oil sample into 7 fractions was performed by di-adsorption column chromatography using neutral aluminum oxide and silica gel. A subsequent high-resolution separation of individual components was achieved by using capillary column gas chromatography, and compound types were detected by a mass spectrometer. In conjunction with a chemometric method, the compounds in the fractions were further resolved or separated, which made it possible to identify some nitrogen-containing compounds and other non-hydrocarbons in crude oils. To a certain extent, this method could relieve the difficulty of classical analysis in identifying those species with very low contents or incompletely separation, particularly in the cases where authentic standards were not available for addition into the unknown samples in order to reveal what indeed existed in them. The structures and contents of 168 nitrogen-containing compounds in one crude sample and 60 non-nitrogen-containing compounds in one of non-hydrocarbon fractions of this oil sample were determined, and the addition-recovery examination of some standard compounds showed that the analytical veracity was satisfactory.  相似文献   

17.
The chromatographic properties of a new stationary phase, phenylaminopropyl silica (PhA-silica), containing phenylaminopropyl residues covalently bonded to the silica surface were studied. The presence of secondary amino groups, phenyl rings and alkyl linkers in the attached molecule makes it especially suitable for the separation of phenols by mixed mode retention mechanism including a combination of hydrogen-bonding, hydrophobic, electrostatic and pi-pi interactions with the stationary phase. The effects of mobile phase pH, ionic strength, nature and concentration of organic modifier on the retention of phenols on PhA-silica were investigated under conditions of reversed-phase HPLC. To elucidate the role of the amino group in the attached molecule in retention of phenols the selectivity of PhA-silica was compared with that obtained for phenylpropyl silica in the framework of a linear solvation energy relationship (LSER) model. The isocratic separation of phenol, and its nine methyl-, chloro- and nitro-substituted derivatives was achieved on a 150x4.6 mm I.D. chromatographic column packed with 7 microm particles of PhA-silica.  相似文献   

18.
In this work, the antitumor constituent β‐elemene was selectively separated from the volatile oil of the Curcumae Rhizoma by countercurrent chromatography with silver nitrate as selective reagent based on the formation of coordination complexes. A biphasic solvent system composed of n‐hexane/methanol/water (2:1.5:0.5, v/v/v) was selected, in which 0.15 mol/L of silver nitrate was added to the aqueous phase. The aqueous phase was used as the stationary phase for separation of β‐elemene by countercurrent chromatography after it was partially purified from the volatile oil by silica gel column chromatography. An enriched β‐elemene fraction was obtained by silica gel column chromatography to improve the percentage of β‐elemene from 16.5 to 46.1%. Subsequently, β‐elemene was further purified from 445 mg of the partially purified sample of volatile oil by countercurrent chromatography with silver nitrate as a selective reagent, yielding 145 mg of β‐elemene with greater than 99% purity, as determined by gas chromatography mass spectrometry. The recovery of β‐elemene from the crude volatile oil through two steps was around 63.6%.  相似文献   

19.
Small, prepacked columns are tested for fractionating petroleum hydrocarbons from crude oil and products oils. Both normal-phase (silica) and reversed-phase (C18) stationary phases yielded fast, easy, and reproducible separations, which facilitated further analysis of the oils by gas or liquid chromatography and mass spectrometry. The different separation characteristics of the stationary phases offer great flexibility in fractionating oil, enriching special compound classes, or separating hydrocarbons from environmental matrices.  相似文献   

20.
Crude oil contains such an extensive range of compounds that a complete analysis is impossible. Fractionation by chemical properties is often used to simplify analytical handling. This work presents a high performance liquid chromatography (HPLC) method using normal phase chromatography on a cyano-bonded phase column to separate acid extracts from crude oils into four fractions; non-polar compounds, saturated carboxylic acids, phenols and polyfunctional acids. The method has been developed both in analytical scale for characterisation of acid extracts, and in preparative scale to provide sufficient sample amounts for further analysis by complementary methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号