首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 375 毫秒
1.
本文报道了 (BF_3·0Et_2+n—C_8H_(17)OH)(简称Ni—Al—B)体系催化丁二烯聚合动力学研究结果,得到聚合速率方程式为 -d[Bd]/dt=k[Ni]~0[A1]~(-1)[B]~0[Bd],A1/B≤1 -d[Bd]/dt=k′[Ni]~0[A1]~(-1)[B][Bd],A1/B>1 聚合表观活化能为49.2kJ·mol~(-1)。  相似文献   

2.
本文研究了 Ni(naph)_2-(i-Bu)_2AlOR-BF_3·OEt_2体系催化丁二烯聚合的行为。结果表明:随着-OR 基团的增大,催化活性升高;-OR 基团影响聚合物分子量,但不影响聚合物链结构;适宜 Al/B 比范围随-OR 基团而变化;随 Al/B 比的增大聚合物分子量直线升高;温度对催化活性、分子量及微观结构影响较大。聚合产物属于高顺式聚丁二烯。  相似文献   

3.
考察了Ni(naph)_2—Al(i—Bu)_3—(BF_3·OEt_2—C_8H_(17)OH)体系催化丁二烯聚合的规律。实验结果表明,该体系催化活性较高、稳定性好、适宜的Al/B比范围宽、所得聚合物为高CiS—1,4—聚丁二烯。Al/B 比由0.3增至3.0时,聚合物的特性数[η]由0.6升至5.2dl/g。改变 Al/B 比,可有效地调节聚合物的分子量。  相似文献   

4.
本工作研究了Ni(naph)_2—Al(i—Bu)_2OG_4H_9—BF_3·OEt_2体系在加氢汽油溶剂中对丁二烯的聚合行为,考察了不同Al/Ni、Al/B、Ni/Bd及聚合温度、聚合时间等因素对催化活性、聚合物分子量及其分布等的影响,并结合磁化半法对体系中Ni的价态进行了探讨。结果表明,Ni(naph)_2—Al(i—Bu)_2OC_4H_9—BF_3·OFt_2体系对丁二烯聚合具有较好的催化活性,体系中镍主要以Ni(Ⅰ)形式存在。并发现,在Ni(naph)_2、Al(i—Bu)_3二元陈化液中加入C_4H_9OH(C_4H_9OH/Al的变化范围为0—1.2)可以提高聚合物的分子量。  相似文献   

5.
研究了Ni(naph)_2-Al(i-Bu)_2OC_8H_(17)—BF_3OEt_2体系催化丁二烯聚合动力学行为。聚合速率随Al/Ni增大而增大,Al/Ni>10后,速率变化趋于平缓。在最佳Al/B=0.5条件下,研究了聚合速率与单体、主催化剂浓度及温度的关系,分别求得了催化剂的利用率、活性中心浓度和增长链平均寿命等动,力学参数,及其随温度的变化规律。该体系属快引发,逐步增长类型。聚合速率方程为:表观活化能为37.85KJ/mol。  相似文献   

6.
Mo—Al催化体系合成高乙烯基1,2—聚丁二烯的研究   总被引:1,自引:1,他引:1  
以 MoCl_3(OOCC_7H_(15))_2-(i-Bu)_2AlO-■(Mo-Al)为催化剂,在加氢汽油中,对丁二烯(Bd)聚合活性进行了研究,考察了聚合条件对聚合活性、聚合物分子量以及微观结构的影响。结果表明,本体系催化活性较高,在酸/钼=6,Mo/Bd=2.0×10~(-4),Al/Mo=50(摩尔比),于50℃聚合5小时,丁二烯转化率达80%。最佳聚合活性条件:正辛酸/MoCl_5=3,聚合温度60℃,Al/Mo=60,(当 Mo/Bd=2.0×10~(-4)时)。Al/Mo 值适宜范围为20—90。制得的聚合物1,2—链节含量高于80%。  相似文献   

7.
本文研究了以(简称Ni—Al—B)为催化体系,加氢汽油为溶剂的丁二烯聚合的动力学行为。实验结果表明,在本实验范围内,聚合速率与主催化剂浓度[Ni]无关,对单体浓度[Bd]呈一级关系。当Al/B<1时,聚合速率方程式可表示为当Al/B>1时,聚合速率方程式可表示为: 此结果和吉本、焦书科等得出的结论不同,较明确地给出了聚合活性与镍系催化剂各组分之间的定量关系。本催化体系聚合表现活化能为25.4KJ·mol~(-1)。  相似文献   

8.
探讨了镍体系合成聚丁二烯在Al—Ni陈化,三种不同加料方式:向丁油中先加Al—Ni陈化液,后加B;先加B,后加Al—Ni陈化液;先加一半B,再加Al—Ni陈化液,补加剩余一半B的一些聚合规律及其对凝胶含量的影响。对用A1-(i-Bu)_2OC_8H_(17)作助催化剂时Al/B比对聚合和凝胶的影响也进行了探讨。  相似文献   

9.
本文讨论了(MoCl_4(O~nC_8H_(17))+H_2O)—(i—Bu)_2 AlOphCH_3催化体系中,不同 H_2O/Mo 值对丁二烯聚合的影响。结果表明,在本实验范围内,H_2O/Mo 值对催化活性影响较小。在 Mo/Bd=2.0×10~(-4)(摩尔比,下同),Al/Mo=30,H_2O/Mo≤1,聚合温度为60℃,聚合时间为6h 的条件下,丁二烯的聚合转化率可达90%以上,聚合物分子链中的1,2—链节结构含量均在85%以上,均属高乙烯基聚丁二烯。  相似文献   

10.
用3种茂金属载体催化剂SiO2/MAO/Cp2ZrCl2,SiO2/MAO/Et(Ind)2ZrCl2和SiO2/MAO/O(SiMe2)2(Ind)2ZrCl2(Cp为环戊二烯基,Ind为茚基)催化乙烯聚合,分别考察了聚合温度及n(Al)n(Zr)(物质的量之比)对催化剂活性及产品性能的影响规律,并初步探索了反应机理,实验结果表明,随着聚合温度的升高或n(Al)/n((Zr)的增大,催化剂活性呈先增后降的趋势,聚乙烯平均相对分子质量下降,当聚合温度升高时,聚乙烯的熔点和结晶度明显降低,但n(Al)n(Zr)的变化对聚乙烯的熔点和结晶度的影响较小,3种催化中SiO2/MAO/O(SiM2)2(Ind)2ZrCl2具有广阔的工业应用前景。  相似文献   

11.
为了研究乙酰丙酮铁(Fe(acac)3)与双亚胺基吡啶类配体组成催化体系的乙烯齐聚行为,合成由乙酰丙酮铁和3种不同结构双亚胺基吡啶配体组成的催化体系.通过比较研究3种含不同取代基配体的催化体系的乙烯齐聚性能,发现配体取代基结构与齐聚活性和齐聚产物分布有很大的关系,合适的取代基位阻及电子效应是决定催化体系活性和产物分布的重要因素.反应温度对催化体系活性和产物分布具有较大影响,随着反应温度的升高,齐聚活性降低,齐聚产物分布向低碳数方向移动;随着n(Al)∶n(Fe)从500增加到3 000,齐聚活性先迅速增加,在n(Al)∶n(Fe)=2 000左右时达到最大,然后呈现下降的趋势,n(Al)∶n(Fe)对齐聚产物的分布基本没有影响.  相似文献   

12.
研究了以n(C8H17OH)/n(Ti)=35的醇改性负载钛催化剂聚合丁二烯的动力学。实验结果表明:在单体转化率低于40%时聚合反应呈稳态特征;n(Al)/n(Ti)为40~80范围内,体系的稳态聚合反应速率方程式为Rp=kp[Ti]0[Bd]。改性的负载钛催化剂合成丁二烯,反应体系表观活化能为30.28 kJ.mol-1,指前因子A=4.3×103h-1。  相似文献   

13.
对影响镍系催化的顺丁橡胶分子量及其分布的主要因素的研究表明,采用Al-Ni二元陈化稀B单加方式时,改变进料丁二烯汽油溶液的温度,可在一定范围内有效地调节聚合物的分子量分布;提高聚合反应温度,聚合物分子量有所降低,而改变体系中两组催化剂的摩尔比,是在较大范围内灵活调节聚合物分子量的最有效方法。  相似文献   

14.
Ti(n-C_8H_(17)O)_4-Al(i-C_4H_9)_3为催化剂合成1, 2-聚丁二烯,采用Ti-Bd-Al三元陈化方式,考查了不同陈化条件对聚合的影响。结果发现,当Al:Ti:Bd=10~15:1:20,在75-90℃高温条件下,陈化1.5-0.5小时,体系的催化活性较催化剂组分单加或室温陈化可提高50%以上,而Al的用量却降低了50-70%,所得聚丁二烯分子量高,分子量分窄,凝胶含量也较少。  相似文献   

15.
采用水热合成法制备了Na-ZSM-5,经离子交换制得H-ZSM-5(n(Si)/n(Al)=40)分子筛,并用其催化苯基羟胺Bamberger重排制对氨基苯酚。采用XRD、FT-IR、N2吸附、SEM和Py-FTTR表征技术,研究了分子筛的物化性质。结果表明,自制的分子筛是结晶性良好的MFI结构微孔分子筛。Na-ZSM-5分子筛骨架中几乎无B酸,H-ZSM-5(40)分子筛存在微量的B酸和L酸中心。结果表明,H-ZSM-5(40)分子筛作酸催化剂,尽管苯基羟胺的转化率较低,但对氨基苯酚的选择性和收率分别高达72.48%和58.75%。通过优化获得的最佳催化反应条件:反应温度353 K,反应时间2 h,水作溶剂,苯基羟胺与催化剂的质量比为1∶3,苯基羟胺的转化率可高达86.35%,对氨基苯酚的选择性高达78.33%。  相似文献   

16.
研究了 Fe Cl3- Al( i- Bu) 3- phen胶体催化剂各组分的配比、加入顺序、陈化等制备方式影响催化活性的原因。在加氢汽油介质中 ,较佳 [Al]/[Fe]比值 ,能将 Fe Cl3颗粒表面的 Fe3+ 还原成 Fe2 + ,又与 Al( i- Bu) 3形成双电层使胶粒稳定。较佳的 [phen]/[Fe]比值保证有充分的 phen与 Fe2 +生成稳定的配合物 ,阻止 Al( i- Bu) 3将 Fe2 +还原成低价态 ( Fe+ ,Fe0 ) ,同时较佳配比制得的胶体催化剂颗粒小而均匀。因为生成活性位的反应是快速反应 ,只有 phen、Fe Cl3先于 Al( i- Bu) 3加入 ,才能有效阻止深度还原。所以最好的加料顺序是 phen+ Fe Cl3+ Al( i- Bu) 3;由于本体系是较稳定的胶体体系 ,在陈化时间为 4h、陈化温度在 - 1 5℃~ 2 0℃范围内几乎不影响催化剂活性。因为丁二烯聚合物能增加胶粒的稳定性 ,所以加丁二烯陈化优于不加丁二烯陈化  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号