首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
以聚二甲基硅氧烷(PDMS)材料为研究对象,在微流控反应芯片内通过氧等离子体处理和聚乙烯亚胺-戊二醛交联法修饰PDMS微通道表面,实现了芯片内apoB 100的快速捕获和检测。设计了分立的集成了光纤传感器和"U"型PDMS微流控芯片的检测体系,根据催化反应前后颜色变化测定apoB 100浓度,消除了复杂的生物化学环境对光学检测的干扰。测试结果表明,由于微通道具有的较大的表面积/体积比,微流控免疫芯片把整个免疫反应及检测过程缩短至1h以内。该方法的检测限为1ng/mL,线性范围在1~20ng/mL。因此微流控免疫芯片-光纤传感器检测系统在临床应用和现场检测领域具有较大的发展潜力。  相似文献   

2.
以聚二甲基硅氧烷(PDMS)材料为研究对象,在微流控反应芯片内通过氧等离子体处理和聚乙烯亚胺-戊二醛交联法修饰PDMS微通道表面,实现了芯片内apoB 100的快速捕获和检测。设计了分立的集成了光纤传感器和"U"型PDMS微流控芯片的检测体系,根据催化反应前后颜色变化测定apoB 100浓度,消除了复杂的生物化学环境对光学检测的干扰。测试结果表明,由于微通道具有的较大的表面积/体积比,微流控免疫芯片把整个免疫反应及检测过程缩短至1h以内。该方法的检测限为1ng/mL,线性范围在1~20ng/mL。因此微流控免疫芯片-光纤传感器检测系统在临床应用和现场检测领域具有较大的发展潜力。  相似文献   

3.
聚二甲基硅氧烷表面改性研究进展   总被引:1,自引:0,他引:1  
刘冰  许林  类彦辉  薄强龙  寿崇琦 《山东化工》2012,41(3):56-58,63
聚二甲基硅氧烷(PDMS)具有良好的化学稳定性和透光性,以及易加工,价格低廉等优点,广泛应用于微流控芯片领域。但是由于PDMS自身为表面高度疏水且多孔性材料,导致其对DNA、蛋白质等生物大分子具有强烈的非特异性吸附,限制了它的应用范围,需要对其进行表面修饰。PDMS表面修饰的方法众多,主要分为物理方法、化学方法两大类。概述了目前常用的几种PDMS表面修饰的方法。  相似文献   

4.
介绍了一种自制的一体化微流控芯片的制作方法。芯片由玻璃片作模具,聚二甲基硅氧烷(PDMS)为基质。该种方法制得的芯片无需封装,微通道、贮液池在聚二甲基硅氧烷单体固化过程中一体形成,用于与质谱联接萌接口也在固化过程中被固定。在芯片微通道中固定酶,从而实现蛋白质在芯片微通道中酶解,质谱检测。  相似文献   

5.
利用选择性紫外曝光法对聚二甲基硅氧烷(PDMS)微流控芯片通道内壁进行了部分亲/疏水改性,通过接触角和原子力显微镜对改性表面进行表征,并利用改性后的芯片制备出了高度均一的单乳液和复乳液. 结果表明,在芯片的非曝光区域,光引发剂二苯甲酮使PDMS表面粗糙且保持疏水性,接触角为101o;而在曝光区域,由于聚合形成的聚丙烯酸交联到PDMS上使其表面光滑且具有亲水性,接触角为62o,形成的亲/疏水特性可维持30 d以上. 利用改性后芯片制备的大豆油、三羟甲基丙烷丙烯酸酯和氟碳油3种单乳液的粒径变异系数均低于3%,而复乳液外径和内径的变异系数分别为3.5%和2.9%.  相似文献   

6.
微流控芯片通过微通道网络,将样品的采集、混合、反应、分离和富集等分析过程集成在芯片上完成,为化学反应的微型化提供了一个良好的操作平台。利用液体在微观尺度下表现出的特殊的表面物理性质,将液相微萃取技术移植到微流控芯片上,可以实现小体积样品中低含量目标分析物的萃取。本文介绍了基于微流控芯片的液相微萃取近年的研究进展,并总结了层流、液滴、捕陷液滴几种基本的萃取模式。  相似文献   

7.
微流控芯片表面的亲水性对生物诊断具有重要的影响,利用紫外光固化料,在注射成型技术的基础上,制作了微流控芯片,以接触角为衡量指标,研究了紫外光固化单体含量、单体种类、树脂种类、紫外光辐照强度和照射时间对制品表面亲水性的影响,结果表明,光固化微注射工艺条件对芯片接触角的影响并不明显,增加光照强度和光照时间,芯片接触角变化并不明显,均在0°~5°之内,而混合单体和树脂成型制品的接触角较小,增加树脂和单体种类,及适当添加助剂有利于改善亲水性,即紫外光固化材料的组成是影响芯片亲水性的主要因素,且适量的助剂可以有效改善芯片接触角,最佳接触角为17°。  相似文献   

8.
对微流控芯片上酶的固定化方法进行了综述,系统总结了酶的常见固定化方法及微流控芯片体系中酶的固定化方法,如常见的包埋法、物理吸附法、化学交联法、共价键合法等。为微流控芯片体系酶的固定化研究提供参考,对药物筛选新方法的建立指出新思路。  相似文献   

9.
聚合物微流控芯片微通道复制成型技术   总被引:2,自引:2,他引:0  
阐述了复制成型技术在实现微流控芯片批量化生产过程中的重要意义。分析了微流控芯片对材料的要求,介绍了常用于制作微流控芯片的聚合物材料及其模塑性能。比较了目前常用的加工复制成型模具凸模微结构的加工方法。综述了热压成型、注射成型以及浇铸成型在微流控芯片微通道成型中的应用,并对其进行了比较分析,展望了未来微流控芯片复制成型技术的发展趋势。  相似文献   

10.
贾露凡  王艺颖  董钰漫  李沁园  谢鑫  苑昊  孟涛 《化工学报》2023,(3):1239-1246+1420
以微流控双水相液滴流技术为基础,开发了一种酶促反应平台,将微流控贴壁液滴流快速传递、高效混合的特点与双水相反应分离耦合过程优化结合。本体系克服了传统宏观双水相体系传质传热慢以及耗时耗能的问题,并建立了贴壁液滴微反应器,产生更大的内环流,进一步增强传质效果。探究了双水相液滴界面的分子限域能力、对酶和产物的选择性分配能力。通过比较贴微通道壁和未贴微通道壁两类液滴微反应器的酶促反应效果,发现贴微通道壁液滴微反应器仅6 min转化率即可达到40%,其反应速率可达未贴微通道壁液滴微反应器9.4倍。本文通过微流控双水相贴壁液滴流实现了酶促反应的强化,为微尺度下的酶催化反应过程强化提供了一种新的思路。  相似文献   

11.
聚丙烯膜表面磷脂自组装/交联改性及其表面性能   总被引:2,自引:1,他引:1       下载免费PDF全文
发展了一种基于分子自组装/交联的聚丙烯微孔膜(PPMM)表面改性方法,以含不饱和长烷基链的两亲性天然卵磷脂为改性剂,首先通过分子自组装在PPMM表面形成类磷脂组装层,再采用紫外线原位聚合交联方法在PPMM表面构建稳定的类磷脂仿生修饰层,进而赋予PPMM表面优异的亲水性和生物相容性。分别采用FTIR/ATR和XPS分析确证了改性前后膜表面基团及化学成分的变化。通过水接触角测定、荧光标记蛋白质吸附和酶联免疫吸附(ELISA)实验,考察了类磷脂仿生修饰前后膜表面亲水性和抗蛋白质吸附性能,发现类磷脂仿生修饰后PPMM表面水接触角由130°下降至30°,抗蛋白质吸附性能也得到明显改善;自组装/交联改性PPMM经多次水洗后仍能保持良好的亲水性和抗蛋白质吸附性能,表明膜表面所形成的类磷脂仿生修饰层具有良好的稳定性。  相似文献   

12.
针对聚合物微流控芯片模内键合过程中微通道变形的问题,采用黏弹性材料模型对聚甲基丙烯酸甲酯(PMMA)微流控芯片模内键合过程中具有梯形截面的微通道变形进行了仿真分析;研究了在105℃下,芯片微通道在不同键合压力和键合时间下微通道的变形。结果表明:微通道不能保持键合前的尺寸,温升对微通道变形影响很小;微通道顶部与两侧的黏合使得微通道顶部宽度和微通道高度变形远大于底部宽度变形,并随着键合压力的增大而增大;当键合时间超过50 s后,键合时间对微通道变形影响很小,可以采用较长的键合时间来保证键合强度而不影响微通道形貌。  相似文献   

13.
近年来,基于聚合物的微加工制造技术已经成为微细加工领域的研究热点,已广泛应用于制备芯片实验室和微流控芯片。以热压技术为基础,研究利用加热电阻丝制备微流控芯片微通道的快速加工技术,并最终实现了基于聚甲基丙烯酸甲酯(PMMA)材料的微通道快速加工,获得了电阻丝压印微通道的最优条件,在电流1. 8 A、时间5s、压力为44. 59 N条件下获得的微通道宽度变形率约为8. 5%,深度变形量约为8. 9%,可以在2 h左右制备完成PMMA微流控芯片。最后,利用该加工技术制作了十字型流动聚焦型微流控芯片,可稳定生成34~74 nL范围内的微液滴,实验结果显示利用本快速加工技术所获得的微通道圆润光滑、性能稳定、键合密封牢固。  相似文献   

14.
粗糙表面微通道电渗流的数值模拟   总被引:1,自引:1,他引:0  
杨大勇  刘莹 《化工学报》2008,59(10):2577-2581
电渗流(EOF)广泛应用于微流控芯片中的流体的传输与混合。针对带有粗糙表面的平行板微通道,建立了描述EOF的控制方程,基于有限元分析方法对具有不同粗糙度和EDL厚度的微通道内的EOF进行了数值模拟。结果表明,当EDL厚度接近0.3倍粗糙度大小时,粗糙度对EDL的影响较大,EOF受到粗糙度的阻力作用较为明显,而当EDL厚度相对粗糙度较大和较小时,EOF速度受到粗糙度的影响相对较小;粗糙表面微通道中部EOF速度与相对EDL厚度的关系呈“V”型曲线,EOF平均速度呈“L”型曲线。研究结论对于微通道表面的优化设计以及微流控芯片中流体的精确操控具有一定的参考意义。  相似文献   

15.
本文报道了聚(双环戊二烯-co-环辛二烯)微流控芯片的制备方法。引入环辛二烯作为共聚单体,与双环戊二烯通过开环易位聚合制备得到弹性共聚物。当环戊二烯与环辛烯的质量比是1 : 1时,制得共聚物的力学性能接近于聚二甲基硅氧烷(PDMS),弹性共聚物具有较高的微尺寸结构成型精度。利用聚双环戊二烯半固化凝胶的反应特性,实现共聚物与聚双环戊二烯基底之间的稳定键合。共聚物微流控芯片可以通过类似于PDMS的连接方式,实现简单、高效的密封连接。利用共聚物微流控芯片制得单分散的微液滴,控制连续相的流速即可实现微液滴尺寸的调变。关键词:聚双环戊二烯共聚物;环辛烯;弹性体;微流控芯片;单分散液滴;中图分类号:TQ630 文献标识码: A 文章编号:1003-5214 (2020) 01-0000-00  相似文献   

16.
结晶是培养蛋白质单晶以及蛋白质分离纯化的一种重要手段。传统静态蛋白质结晶操作周期长,晶体粒径分布不均。液滴微流控技术能够实现低雷诺数条件下的高效传质传热,是提高蛋白质结晶速率以及改善晶体尺寸分布的潜在方法。本研究利用液滴微流控系统分别在静止液滴和低剪切速率(流动液滴)条件下进行蛋白质结晶。实验结果表明,微流控液滴内循环可以有效提高成核速率和晶体数量,并且成核速率、平均晶体数量和晶体尺寸均与液滴流速呈单调依赖关系,证明了微流控液滴内温和的剪切力场是改善蛋白质晶粒度分布,减少蛋白质晶体聚集的有效手段。此外,活性实验表明微液滴内循环对溶菌酶的活性并未产生明显影响。  相似文献   

17.
微流控芯片超声振动注射成型模具设计   总被引:3,自引:1,他引:2  
针对目前微流控芯片注射成型中微通道充填困难、成型精度低等问题,研究超声振动辅助注射成型微流控芯片的方法,设计出微流控芯片超声振动模具。创新性地引入热流道系统,实现了超声振动系统与注射成型模具的有效集成;独特的流道和型腔布置实现了芯片的基片和盖片同模同时成型;改进的二次顶出机构实现了芯片的无损脱模。  相似文献   

18.
通过将具有Pb2+响应性的聚(N-异丙基丙烯酰胺-共聚-苯并-18冠-6丙烯酰胺)智能微凝胶与H型微通道相结合,构建了一种能便捷、灵敏、可视化检测水溶液中Pb2+浓度的新型智能Pb2+检测微流控芯片。该微流控检测芯片主要由软光刻技术构建,并结合紫外光照聚合在H型微通道中原位构建智能微凝胶。基于该微凝胶的Pb2+响应性体积相变和H型微通道中的流体流动,该微流控检测芯片能将Pb2+浓度信号有效转换为易于检测读取的、可视化的H型微通道中指示液覆盖的指示柱数目的变化信号。通过光学显微镜便捷观察测量指示液覆盖的指示柱数目的变化,实现了对水溶液中痕量Pb2+浓度的超灵敏定量检测。该微流控检测芯片为水环境中的痕量Pb2+浓度的便捷、灵敏、可视化检测提供了新策略。  相似文献   

19.
以聚甲基丙烯酸甲酯(PMMA)为原料,通过注塑加工的方式制备微流控芯片,经过多次注塑实验得出影响PMMA微流控芯片成型质量的主要因素是:模具温度、保压压力、熔体温度和注射速度。在其他参数不变的情况下,通过正交实验和极差分析确定了PMMA微流控芯片注射成型的最佳工艺:熔体温度260 ℃,模具温度50 ℃,保压压力60 MPa,注射速度400 mm/s,在该工艺条件下制得的单流道测试装置B的开口宽度、槽底宽度、槽深分别为:591.90、381.26、408.47 μm,这些参数所对应的设计值分别为:400、400、400 μm;在共聚焦显微镜下观察到芯片表面较为洁净、微结构比较完整,最后使用该微流控芯片完成了液体混合实验和液滴生成实验,表明最佳注塑工艺加工出的微流控芯片能满足正常使用,对于未来微流控芯片的批量化生产有着重要意义。  相似文献   

20.
宋春辉  胡志刚  杜喆  祖向阳  宋克纳 《塑料工业》2020,48(4):166-171,152
为了提高聚二甲基硅氧烷(PDMS)盖片和聚甲基丙烯酸甲酯(PMMA)基片的复合式微流控芯片键合的稳定性,开展了微流控芯片等离子处理特性的时间因素的研究。利用红外光谱和扫描电镜对处理前后的PMMA进行表征,确定硅烷化等离子方法的可行性;同时对PDMS、PMMA和硅烷化PMMA不同等离子处理时间的接触角及接触角恢复情况进行测量,采用正交试验法得到了最大键合力所需的最佳等离子处理时间以及有效操作时域,研究结果为确定微流控芯片的等离子体键合工艺参数提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号