首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
We usedAgrobacterium tumefaciens to transform flowering stalk explants of five genotypes of broccoli with a construct containing the neomycin phosphotransferase gene and aBacillus thuringiensis (Bt) gene [CryIA(c) type] optimized for plant expression. Overall transformation efficiency was 6.4%; 181 kanamycin-resistant plants were recovered. Of the 162 kanamycin-resistant plants tested, 112 (69%) caused 100% morality of 1st-instar larvae of aBt-susceptible diamondback moth strain. Southern blots of some resistant transformants confirmed presence of theBt gene. Selected plants that gave 100% mortality of susceptible larvae allowed survival of a strain of diamondback moth that had evolved resistance toBt in the field. F1 hybrids between resistant and susceptible insects did not survive. Analysis of progeny from 26 resistant transgenic lines showed 16 that gave segregation ratios consistent with a single T-DNA integration. Southern analysis was used to verify those plants possessing a single T-DNA integration. Because these transgenic plants kill susceptible larvae and F1 larvae, but serve as a suitable host for resistant ones, they provide an excellent model for tests ofBt resistance management strategies.  相似文献   

2.
The success of the current resistance management plan for transgenic maize, Zea mays L. (Poaceae), targeting the rootworm complex hinges upon high rates of mating between resistant and susceptible beetles. However, differences in the fitness of adult beetles could result in assortative mating, which could, in turn, change the rate of resistance evolution. Adult head capsule widths of naturally occurring populations of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), were examined in a variety of refuge configurations. Beetles were classified into treatments based on the hybrid – non‐Bt refuge or Bt maize targeting larval rootworms (hereafter BtRW maize) – and location – proximity to other Bt‐RW or refuge plants – of the natal host plant. Treatments included the following: a refuge plant surrounded by other refuge plants, a refuge plant located near a BtRW plant, a BtRW plant surrounded by BtRW plants, and a BtRW plant located near a refuge plant. The mean head capsule width of males emerging from BtRW plants was significantly smaller than the mean head capsule width of males emerging from refuge plants. These results indicate that males emerging from BtRW maize plants may be exposed to sublethal doses of the Bt toxin as larvae. No differences were detected between females emerging from refuge plants compared with Bt‐RW plants. Overall mean head capsule width decreased as the season progressed, regardless of treatment. The diminished head capsule width of western corn rootworm males emerging from Bt‐RW maize may act to enhance resistance management, particularly in a seed mix refuge system.  相似文献   

3.
4.
The inheritance of resistance to lettuce root aphid, Pemphigus bursarius, was studied in lettuce using the Wellesbourne cultivars Avondefiance and Avoncrisp as resistant parents and Borough Wonder and Webb's Wonderful as aphid-susceptible parents. All four cultivars were crossed in all possible combinations including reciprocals and the response to root aphid of plants in the P1F1F2 and BC generations was assessed using apterae of P. bursarius from the lettuce cv. Iceberg. Resistance to attack was clearly inherited and the parents appeared to be homozygous for their resistance or susceptibility. In the F1 generation, however, in all crosses between resistant and susceptible parents, segregation into susceptible, resistant and some slightly less resistant plants occurred. This and the highly significant differences in segregation between pairs of reciprocal crosses in the F1 and other generations indicate that the inheritance of resistance to root aphid is controlled by extra-nuclear factors. Modifying genes might also be involved but there appears to be no linkage of root aphid resistance with resistance to downy mildew, for which the Wellesbourne lettuces were bred.  相似文献   

5.
The aim of the present investigation was to test the hypothesis that the cypress canker caused by a fungus (Seiridium cardinale) infection induced effects on photosynthesis which could be related to photoinhibition and the process of recovery in susceptible and resistant needles. Photoinhibition of photosynthesis and recovery was studied in canker‐infected susceptible and resistant needles of cypress (Cupressus sempervirens L.) under controlled conditions (irradiation of detached needles to approximately 1900 μmol/m2/s). The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem (PS) II, Fv/Fm declined, and Fo increased significantly in canker‐susceptible needles, while Fo did not change in resistant needles. In isolated thylakoids, high light (HL) decreased the rate of whole chain and PS II activity markedly more in susceptible than in resistant needles. A smaller reduction of PS I activity was noticed only in susceptible needles. Upon subsequent dark incubation, fast recovery was noticed in both needle types and reached maximum rates of PS II efficiency similar to those noticed in non‐photoinhibited needles. The artificial exogenous electron donors such as diphenyl carbazide (DPC), NH2OH and Mn2+ failed to restore the HL induced loss of PS II activity in susceptible needles, while DPC and NH2OH significantly restored it in resistant needles. The results suggest that HL inactivates the donor side of PS II in resistant and the acceptor side of PS II in susceptible needles. The results on the quantification of the PS II reaction centre protein D1 and 33 kDa protein of water‐splitting complex following HL exposure showed pronounced differences between susceptible and resistant needles. The marked loss of PS II activity in HL‐irradiated needles was due to the marked loss of D1 protein in susceptible and 33 kDa protein in resistant needles, respectively.  相似文献   

6.
The Roegneria kamoji accession ZY 1007 was resistant to the mixed predominant races of Puccinia striiformis f.sp. tritici (Pst) in China based on field tests at adult‐plant stage. The seedling resistance evaluation of ZY 1007 showed that it was resistant to stripe rust physiological strains CYR29, CYR33 and PST‐V26, which were the predominant races of Pst in China. The female parent R. kamoji cv. Gansi No.1 (susceptible to Pst) was crossed with ZY 1007 (resistant to Pst). Parents, F1 and F2 populations were tested in a field inoculated with the mixed urediniospores. ZY 1007 and all the observed 11 F1 hybrid plants were resistant, while plants of Gansi No.1 were susceptible. Among the 221 F2 plants, 168 plants were resistant and 53 were susceptible, and the segregation of resistant and susceptible plants fits 3R:1S ratio (χ2 = 0.074, P > 0.75). It confirmed that the resistance of stripe rust in ZY 1007 was controlled by a single dominant gene and temporarily designated as YrK1007.  相似文献   

7.
8.
Abstract 1 Feeding behaviours, and lethal and sublethal (growth, development and food utilization) effects of Foray 48B, a commercial formulation of Bacillus thuringiensis (kurstaki), were investigated on fourth‐ and sixth‐instar spruce budworm larvae according to food nutritive quality. Nitrogen and soluble sugar content of artificial diets were modified to obtain three different qualities of food, simulating variations in nutritive quality of host tree. 2 Larval development times were longer for Bt‐treated larvae and pupal weights were reduced for sixth‐instar larvae only. Bt‐induced mortality levels were influenced by food quality. Ingested dose of Bt and feeding inhibition times were strongly affected by the Bt treatment, but food quality affected only fourth‐instar larvae. Except for food digestibility, nutritional indices were negatively affected by the Bt treatment and by the reduction in food quality. 3 Contrary to early treated larvae (fourth instar), larvae treated at the beginning of the sixth instar were not able to compensate for Bt injury and were consequently more affected by the Bt‐treatment both in terms of lethal and sublethal effects. 4 Bt efficacy was not directly related to the ingested dose. 5 Increase in larval vulnerability to Bt was more likely a consequence of a general stress induced by a less suitable food than a direct interaction between Bt and food nitrogen or sugar compounds. 6 The application of Bt on late‐instar larvae could be a successful operational strategy at low population levels when field sprays target the insect instead of foliage protection.  相似文献   

9.
Phytotoxicity of AAL-toxin and fumonisin B1 to six cultivars of tomato was compared with the pathogenicity of their fungal sources, Alternaria alternata and Fusarium moniliforme, respectively. These include two AAL-toxin susceptible cultivars with genotypes(asc/asc), three resistant cultivars (Asc/Asc), and a heterozygous cultivar (Asc/asc.) A. alternata spores were pathogenic to the susceptible but not to the resistant cultivars F. moniliforme was not pathogenic to any of the tomatoes. Filtrates of both fungi grown on rice containing their respective toxins caused necrosis within 48 h and eventually mortality on susceptible cultivars but not on the resistant lines. The heterozygous cultivar Asc/asc showed minimal damage and no mortality after 14 days exposure to both filtrates and both toxins. The spores of both fungi had no effect on heterozygous intact plants. Tomato leaf disc bioassays with AAL-toxin and fumonisin B1 at 1μM caused cellular leakage and reduced chlorophyll content in susceptible cultivars and minimal effects on the heterozygous and resistant varieties.  相似文献   

10.
Abstract. The effects of Bacillus thuringiensis (Bt) Cry1C toxin on the metabolic rate of Cry1C resistant and susceptible Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) are investigated using closed‐system respirometry. Mechanisms of resistance to the Bt toxin may be associated with an energetic cost that can be measured as an increase in metabolic rate compared with Bt‐susceptible insects. This hypothesis is tested using third‐ and fifth‐instar larvae and 1–7‐day‐old pupae. Metabolic rate is measured as the amount of O2 consumed and CO2 produced. V?O2 and V?CO2 (mL g?1 h?1) of third‐instar Cry1C resistant larvae reared continuously on a diet containing 320 µg Cry1C toxin per g diet (CryonT) are significantly greater than third‐instar Cry1C resistant larvae reared on toxin for 5 days and reared thereafter on untreated diet (Cry5dT), Cry1C resistant larvae reared on untreated diet (CryReg) and the susceptible parental strain (SeA) reared on untreated diet. There are no differences in V?O2 and V?CO2 (mL g?1 h?1) among treatment groups for fifth‐instar larvae. CryonT larvae and pupae weigh significantly less than larvae and pupae receiving other treatments. Smaller body mass may be an important biological cost to individuals exposed continuously to Bt toxin. One‐day‐old pupae of all treatment groups exhibit a high V?O2 (mean approximately 0.174 mL g?1 h?1) with CryonT having a significantly greater value than all other treatments; there are no differences among the other treatments. Pupal metabolic rates of all treatment groups decline to a minimum between days 2 and 4 then increase linearly between days 4 and 7 until adult emergence. These results demonstrate no difference in metabolic rates, and possibly fitness costs, between resistant (CryReg and Cry5dT) and susceptible (SeA) S. exigua except when larvae were reared continuously on toxin (CryonT).  相似文献   

11.
Abstract 1 Larval survival and development of Dipel‐susceptible and ‐resistant strains of European corn borer, Ostrinia nubilalis (Hübner), were assayed using diets incorporating low doses of a commercial formulation of Bacillus thuringiensis var. kurstaki Berliner (Dipel ES). 2 Larval mortality, growth and development, pupation rate and pupal weight were not significantly different between Dipel‐susceptible and ‐resistant strains when larvae were reared on a nontoxic control diet. 3 Larval mortality of Dipel‐resistant larvae did not significantly change as Dipel concentration increased at the tested concentrations, whereas mortality of Dipel‐susceptible larvae increased dramatically as Dipel concentration increased. 4 Larval development was significantly delayed when larvae were fed diets containing low doses of Dipel. 5 Pupation rate and pupal body weight declined as Dipel concentration increased but it decreased faster for the susceptible strain than for the resistant strain.  相似文献   

12.
The orange wheat blossom midge, Sitodiplosis mosellana (Géhin), can significantly reduce wheat yield. Growing resistant wheat cultivars is an effective way of managing this pest. The assessment of cultivar resistance in field trials is difficult because of unequal pressure of S. mosellana caused by differences in cultivar heading dates relative to the flight period of S. mosellana adult females and huge variations of egg laying conditions from 1 day to another. To overcome these hurdles and to expose all cultivars homogeneously to the pest, an assessment method of cultivar resistance was developed under semi‐field conditions. In 2015, the resistance of 64 winter wheat cultivars to S. mosellana was assessed. Few or no larvae developed in the ears of resistant cultivars, but in susceptible cultivars, large numbers of larvae developed. Seventeen cultivars proved to be resistant, whereas 47 were susceptible. The identification of new resistant cultivars offers more opportunities to manage S. mosellana. The phenotyping method is easy, cheap, efficient and reliable. It can be used to guide the breeding of new resistant wheat cultivars. Using specific midge populations, this method could also be used in research on new resistance mechanisms in winter wheat or in other cereal species.  相似文献   

13.
To determine whether field-selected resistance of diamondback moth (Plutella xylostella L.) (Lepidoptera: Plutellidae) to Bacillus thuringiensis is based on behavioral or physiological adaptation, we measured mortality, consumption, and movement of larvae from a susceptible and a resistant colony when placed on untreated and B. thuringiensis treated cabbage. Colonies did not differ in mortality, consumption, or movement on untreated cabbage. However, for a given amount of consumption of treated cabbage, resistant larvae had lower mortality than susceptible larvae, demonstrating that resistance had a physiological basis. The movement patterns could not account for the differences between colonies in survival. Resistant larvae did not avoid B. thuringiensis more than did susceptible larvae. Thus, we found no evidence for behavioral resistance.  相似文献   

14.
The sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), strain (F52‐3‐R) was developed from F3 survivors of a single‐pair mating on commercial Cry1Ab Bacillus thuringiensis (Bt) corn plants in the greenhouse. The susceptibility of a Bt‐susceptible and the F52‐3‐R strain of D. saccharalis to trypsin‐activated Cry1Ab toxin was determined in a laboratory bioassay. Neonate‐stage larvae were fed a meridic diet incorporating Cry1Ab toxin at a concentration range of 0.0625 to 32 µg g?1. Larval mortality, larval weight, and number of surviving larvae that did not gain significant weight (<0.1 mg per larva) were recorded on the 7th day after inoculation. The F52‐3‐R strain demonstrated a significant level of resistance to the activated Cry1Ab toxin. Larval mortality of the Bt‐susceptible strain increased in response to higher concentrations of Cry1Ab toxin, exceeding 75% at 32 µg g?1, whereas mortality of the F52‐3‐R strain was below 8% across all Cry1Ab concentrations. Using a measure of practical mortality (larvae either died or gained no weight), the median lethal concentration (LC50) of the F52‐3‐R strain was 102‐fold greater than that of the Bt‐susceptible insects. Larval growth of both Bt‐susceptible and F52‐3‐R strains was inhibited on Cry1Ab‐treated diet, but the inhibition of the F52‐3‐R strain was significantly less than that of the Bt‐susceptible insects. These results confirm that the survival of the F52‐3‐R strain on commercial Bt corn plants was related to Cry1Ab protein resistance and suggest that this strain may have considerable value in studying resistance management strategies for Bt corn.  相似文献   

15.
The gram pod borer, Helicoverpa armigera, is one of the most important constraints to chickpea production. High acidity of chickpea exudates is associated with resistance to pod borer, H. armigera; however, acidic exudates in chickpea might influence the biological activity of the bacterium, Bacillus thuringiensis (Bt), applied as a foliar spray or deployed in transgenic plants for controlling H. armigera. Therefore, studies were undertaken to evaluate the biological activity of Bt towards H. armigera on chickpea genotypes with different amounts of organic acids. Significantly lower leaf feeding, larval survival and larval weights were observed on ICC 506EB, followed by C 235, and ICCV 10 across Bt concentrations. Leaf feeding by the larvae and larval survival and weights decreased with an increase in Bt concentration. However, rate of decrease in leaf feeding and larval survival and weights with an increase in Bt concentration was greater on L 550 and ICCV 10 than on the resistant check, ICC 506EB, suggesting that factors in the resistant genotypes, particularly the acid exudates, resulted in lower levels of biological activity of Bt possibly because of antifeedant effects of the acid exudates. Antifeedant effects of acid exudates reduced food consumption and hence might reduce the efficacy of Bt sprays on insect‐resistant chickpea genotypes or Bt‐transgenic chickpeas, although the combined effect of plant resistance based on organic acids, and Bt had a greater effect on survival and development of H. armigera than Bt alone.  相似文献   

16.
This study was carried out to develop an in vitro test for the identification of genotypes resistant to Septoria nodorum blotch. The basis for this project was a previous study in which a crude extract of S. nodorum was used as a selective agent (Keller et al. 1994). It was possible to distinguish resistant and susceptible cultivars in an in vitro test with zygotic embryos. In our project we wanted to test whether this in vitro test can also be used to detect resistant and susceptible genotypes in early segregating populations. Specific crosses between eight winter wheat lines showing contrasting resistance reaction for S. nodorum blotch on leaves and ears were made. The resistance level of both leaf and ear was evaluated after artificial inoculation in the field for the parental lines, the F1 progenies, as well as for segregating F3 and F4 populations. In addition, this plant material was tested in vitro using methods similar to those described by Keller et al. (1994), i.e. culturing immature zygotic embryos and mature seeds on selective media. A good agreement between in vitro screening and field resistance on the ear was found for the parental lines, the F1 and F4 generation but not for the F3 generations. This leads to the conclusion that the in vitro screening might be integrated into wheat breeding programs. Populations showing a high susceptibility to the pathogen metabolites in vitro could be discarded. Another promising implementation for wheat breeding would be the screening of advanced breeding material or candidate partners in a crossing program for resistance on the ear. However, the in vitro screening is not precise enough to select single plants in early segregating populations. Received: 18 January 1999 / Accepted: 30 April 1999  相似文献   

17.
We compared the survival of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) eggs and larvae on Bt and conventional cotton, in the presence or absence of the generalist predator, green lacewing larvae, Mallada signatus, (Schneider) (Neuroptera: Chrysopidae). In small arenas, green lacewings consumed a similar number of H. armigera eggs (ave. 15.8 ± 1.3 on conventional, 12.6 ± 1.4 on Bt cotton per predator over 24 h) and larvae (ave. 6.8 ± 0.7 conventional, 6.5 ± 0.8 Bt per predator over 24 h) whether on Bt or conventional cotton leaves. Likewise, similar numbers of eggs were consumed by each lacewing larva searching whole plants of either Bt (ave. 15.5 ± 0.6 of 49 over 24 h) or conventional (ave. 13.6 ± 1.1 of 49 over 24 h). On conventional plants over 72 h, survival of H. armigera larvae was 72.8% and decreased to 37.7% when lacewings were present, giving a net consumption rate of 35.1% (8.6 prey per predator over 72 h). On Bt cotton plants, 13.6% of the H. armigera larvae survived after 72 h and this decreased to 1.7% when lacewings were present. This combination of mortality factors operated synergistically. Helicoverpa armigera larvae moved to fruiting structures on conventional or Bt cotton but failed to survive in the squares (young flower buds) when the impacts of Bt and lacewings were combined. The removal of first to second instar H. armigera larvae from squares of Bt cotton by predators has the potential to reduce immediate pest damage and, perhaps more importantly, remove potentially Bt‐resistant genotypes.  相似文献   

18.
Euschistus heros (Hemiptera: Pentatomidae) is considered a major insect pest in soybean production in Brazil. The indiscriminate application of pesticides to fields leads to reduction in biodiversity, selection of resistant populations, emergence of new pest outbreaks, and damage to non‐target organisms. The objective of this research was to evaluate the effects of exposure to Cry proteins present in new isolates of Bacillus thuringiensis Berliner, commercial formulations, and Bt soybean on E. heros development. The feeding preference of E. heros for Bt‐ vs. non‐Bt soybean was also evaluated. All treatments caused significant mortality to E. heros except the Bt soybean. Tests with combinations of isolated Bt‐toxins indicated that combinations had greater efficacy than other treatments (>98% mortality). The results demonstrate that E. heros is susceptible to B. thuringiensis toxins, which may contribute to the management of this insect in soybean agro‐ecosystems.  相似文献   

19.
Beet armyworm, Spodoptera exigua (Hübner), is an economic pest of chickpea, Cicer arietinum L., in Mexico and the Indian subcontinent. Larvae feed on the vegetative and reproductive stages of chickpea and the development of plant resistance is a priority in the management of this pest. Forty‐two recombinant inbred lines (RILs) from a chickpea recombinant inbred line population (CRIL‐7) developed from a cross between FLIP 84‐92C (susceptible C. arietinum) and PI 599072 (resistant C. reticulatum Lad. accession) were rated resistant (nine lines with post‐trial larval weights 0.42–0.59 mg), moderately resistant/susceptible (25 lines, larval weights 0.61–0.99 mg) and susceptible (eight lines, larval weights 1.01–2.17 mg) to beet armyworm larvae in a general glasshouse screening. Resistance and susceptibility of entries (RILs in the CRIL‐7 population, parents, checks) was based on the average weight gain and fate of early‐stage larvae on pre‐flowering plants. In a growth chamber trial, early‐instar larval weight gain differed significantly (P < 0.0001) among entries (12 RILs, parents, checks), with mean weights from 0.80 mg (resistant RIL) to 4.03 mg (susceptible kabuli cultivar). There were no significant differences (P = 0.0836) in larval mortality among the entries in the growth chamber trial, although mortality rates were 28.2–61.9%. Flavonoid and isoflavonoid extractions and analyses did not clarify the role played by these phytochemicals in chickpea resistance to S. exigua. The requisite high levels of resistance to S. exigua and other pests for breeding resistant culivars may reside in the CRIL‐7 population.  相似文献   

20.
The widespread planting of insect‐resistant crops has caused a dramatic shift in agricultural landscapes, thus raising concerns about the potential impacts on both target and non‐target pests. In this study, we examined the potential effects of intra‐specific seed mixture sowing with transgenic Bt rice (Bt) and its parental non‐transgenic line (Nt) (100% Bt rice [Bt100], 5% Nt+95% Bt [Nt05Bt95], 10% Nt+90% Bt [Nt10Bt90], 20% Nt+80% Bt [Nt20Bt80], 40% Nt+60% Bt [Nt40Bt60] and 100% Nt rice [Nt100]) on target and non‐target pests in a 2‐year field trial in southern China. The occurrence of target pests, Sesamia inferens, Chilo suppressalis and Cnaphalocrocis medinalis, decreased with the increased ratio of Bt rice, and the mixture ratios with more than 90% Bt rice (Bt100 and Nt05Bt95) significantly increased the pest suppression efficiency, with the lowest occurrences of non‐target planthoppers, Nilaparvata lugens and Sogatella furcifera in Nt100 and Nt05Bt95. Furthermore, there were no significant differences in 1000‐grain dry weight and grain dry weight per 100 plants between Bt100 and Nt05Bt95. Seed mixture sowing of Bt rice with ≤10% (especially 5%) of its parent line was sufficient to overcome potential compliance issues that exist with the use of block or structured refuge to provide most effective control of both target and non‐target pests without compromising the grain yield. It is also expected that the strategy of seed mixture sowing with transgenic Bt rice and the non‐transgenic parental line would provide rice yield stability while decreasing the insecticide use frequency in rice production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号