首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
为研究采空区矸石充填体干湿循环长期承载特性,运用自主研制的大尺寸破碎岩石变形-渗流试验系统,进行了破碎矸石干湿循环蠕变试验,分析了矸石岩性、轴向应力及粒径级配对破碎矸石干湿循环长期承载变形特性及分形特征的影响。结果表明:在相同轴向应力和粒径级配条件下,随岩石单轴抗压强度的增大,破碎岩石试样的碎胀系数增大,而应变、蠕变阶段的应变和碎胀系数及分形维数减小;在相同粒径级配条件下,随轴向应力的增大,破碎矸石相邻两级荷载的应变差和碎胀系数差逐渐减小,而分形维数逐渐增大;当n(Talbol幂指数)为0.5时,破碎矸石蠕变变形、压实特征值最小,n为0.3次之,而当n为0.7时最大;同时随n的逐渐增大,破碎矸石压缩后分形维数增量增大,更多的矸石颗粒被压碎。  相似文献   

2.
为了研究采空区破碎岩石的承压变形及分形特征,利用自主研制的大尺寸破碎岩石变形-渗流试验系统分别对不同岩性、不同轴向应力和不同粒径级配条件下的采空区破碎岩石进行了承压变形试验。试验结果表明:破碎岩石压实后,大粒径岩块质量减少,小粒径岩块的质量增多,处于中间粒径区间的岩块质量变化趋于稳定,岩块整体体积逐渐减小;岩石的强度与岩石压缩后分形维数呈负相关关系,岩石强度越低,抗变形能力越差,压实后分形维数越大;随着轴向应力的增大,大粒径岩块质量减少速度趋于缓慢,分形维数不断增大,分形维数的增长速度逐渐减小,最后趋向于0;破碎岩石试样中的大尺寸岩块含量越多,压实后岩石试样的分形维数增量越大,岩石破碎程度较为剧烈。  相似文献   

3.
分别对不同级配(Talbot指数为0.2,0.4,0.6和0.8)侧向受限饱和破碎砂岩进行压缩,利用显微CT观察了试样内部孔隙结构的变化规律;基于分形理论,定量研究了粒度分布特征;通过计算应变能密度,分析了能量耗散特征。结果表明,在16 MPa轴向应力下,轴向应变为0.304 5~0.324 1;在压实初期,试样结构松散,颗粒间接触不稳定,孔隙尺寸较大且联通性好;而在压实后期,试样密实,孔隙形状多为稳定的三角形。粒度分布具有分形特征,分形维数范围为1.733 1~2.561 0。当轴向应力为0~4 MPa时,颗粒破碎发生急剧,分形维数快速增大;而在4 MPa后,颗粒破碎发生较少,分形维数缓慢增大。变形引起的能量耗散随着轴向应变和分形维数的增大而加速增大,当轴向应变大于0.17或分形维数大于2.1后,应变能密度急剧增大。初始粒径配比对粒度分布和能量耗散均有影响,相同轴向应力下,Talbot指数越大,分形维数越小;相同轴向应变下,Talbot指数越大,应变能密度越小。  相似文献   

4.
为研究承压破碎煤岩体压实与再破碎特征,根据破碎煤岩体的力学特征与孔隙结构的稳定性将破碎煤岩体的压实变形过程分为塑性失稳、应力恢复与类原岩应力3个阶段,再通过获有专利权带侧限的破碎煤岩体压缩实验系统以分级加载的方式对不同Talbol指数n的破碎煤样进行压实试验.研究表明:在整个压实过程中,由煤样颗粒位移重组引起的变形大于由破碎填充引起的变形;随着应力的增大,各组试样中小粒径的颗粒不断大幅增加,其中M-4组试样增幅最大,增加了389.4 g,其余大粒径的颗粒不同程度的减少,4组试样承载后的粒度分布均趋近于同一种稳定的级配结构;分形维数轴向应力间符合幂函数关系,且应力一样时,n越大,混合破碎煤样的分形维数变化率越大;给出破碎煤岩体承压过程中压缩模量的计算公式,并发现相同应力条件下n越大,破碎率变化率越大,混合破碎煤岩体的稳定性越差,为采空区安全治理与预防地表沉降提供了有力的理论指导.  相似文献   

5.
含水条件下破碎岩体的变形及压实是引发采空区地表沉降的因素之一。为探究浸水时间、级配、轴向压缩位移3种因素对承载破碎岩体粒度分布分形特征及压实特性的影响规律,采用轴向压缩位移控制的方法,进行了小位移情况下5组不同配比破碎煤样的侧限压实试验。结果表明:1)在轴向压缩位移较小的情况下,随着浸水时间的增加,同级配破碎煤样粒度分布分形维数呈减小趋势;2)浸水时间与粒径分布分形维数曲线可用指数函数拟合;3)随着配比指数n的增大,粒度分布分形维数逐渐减小;4)随着轴向压缩位移的增加,同级配破碎煤样粒度分布分形维数与轴向应力都呈增加趋势,可以分为0~15 mm的缓慢增加阶段和15 mm后的快速增加阶段。基于破碎煤样在不同浸水时间条件下承载能力与粒度分布特征的变化规律,得出其承载能力随浸水时间增加而降低,而粒度分布分形维数呈减小趋势,从而为进一步研究破碎岩体承载条件下的强度、变形及粒度分布特征提供依据。  相似文献   

6.
《煤矿安全》2021,52(4):1-6
利用DDL600电子万能试验机和自主研发的破碎岩石压实装置,采用分级加载方式对不同相对湿度下的级配破碎煤样进行单轴侧限压缩试验,通过筛分和称重各粒径煤样计算出粒度分形维数,分析各级轴向应力下破碎煤样的粒径分布特征,并根据能量耗散模型计算出破碎能量耗散率,探究加载过程中破碎煤样的能量耗散率规律。结果表明:煤样破碎过程中分形维数与加载应力满足对数关系,初始级配对分形维数变化的影响随加载应力的增大而减小,且相对湿度的增加会降低分形维数;相对湿度通过减少破碎发生而减小了煤样的能量耗散,其能量耗散率的变化区间为30%~42%;煤样的能量耗散率随分形维数呈先增大后减小的趋势,且湿度越大能量耗散率到达峰值时的分形维数越小,能耗率变化越突出。  相似文献   

7.
为研究大粒径破碎岩石承压变形特性,研制了大尺寸破碎岩石承压变形试验系统,选取某矿区典型顶板砂岩,考虑垮落区破碎岩石粒径的分布特征和受力状态,进行了正态分布的粒径级配和梯形分级加载试验。试验表明:随轴向载荷增加,破碎岩石轴向变形逐渐增大,残余碎胀系数和空隙率逐渐减小,加载较恒载阶段尤为明显;恒载初期,轴向应变增长较快,而后逐渐变缓并趋于平稳,应变时间历程呈现对数关系;加载阶段,随载荷增大,破碎岩石试样轴向应变差值呈现先减小后增大,恒载阶段,随载荷增大,破碎岩石试样轴向应变差值则呈现先增大后减小;破碎岩石承压后的变形分为瞬时压缩变形和长期压缩变形两个阶段,主要由颗粒位置调整、原始或新生小颗粒滑动填充空隙引起的;破碎砂岩试样以粒径15~20 mm为承压变形过程中的稳定粒径,试验后,粒径15 mm的含量均有增加,粒径20 mm的含量则均有减小,为破碎砂岩试样总质量的16.76%。  相似文献   

8.
采空区不同岩性冒落破碎矸石的压实特性及承载力学性质对上覆岩层移动破坏有重要影响。采用侧限压缩试验与声发射测试试验方法,对相同级配的砂岩、砂质泥岩两种单一岩性及砂岩-砂质泥岩组合岩性破碎岩石在侧限压缩条件下的变形特征、破碎特征及不同压缩阶段的声发射特征进行了研究。结果表明:在加载前期,破碎岩石的应变随时间的变化曲线存在直线上升段,随时间增加,呈现急剧上升后趋于平缓的特征;不同单一及组合岩性破碎岩石在侧限受压过程中应力与应变均呈非线性关系;根据破碎岩石的应力-应变特征将破碎岩石的压缩变形过程划分为快速压密阶段、缓慢压实阶段及稳定压固阶段。随着轴向压力逐渐增大,破碎岩样的大颗粒骨架破坏、中等颗粒移位滑动、小颗粒填充孔隙;不同岩性的应变与应力呈正相关关系,孔隙率与应力呈负相关关系,组合岩性岩样介于单一岩性岩样之间;不同单一、组合岩性比例与破碎岩样分形维数呈指数函数关系;基于压实变形声发射测试试验结果将破碎岩石压缩过程划分为滑移流动变形阶段、压裂变形填充阶段及压密弹性变形3个阶段;不同阶段破碎岩样的累计计数及累计能量曲线均表现出阶段性的变化特征,随着应力增加,前期声发射累计振铃计数及累计能量表现...  相似文献   

9.
《煤炭技术》2017,(8):131-134
通过设定恒定活塞下压力,测试不同Talbol幂指数n级配下的破碎砂岩受压位移,换算破碎砂岩的密实度,采用轴向力连续加载方式,研究破碎砂岩的渗流规律与Talbol幂指数n的关系,为预防突水、煤与瓦斯突出等灾害提供指导。  相似文献   

10.
为探究矸石集料的承载特性与破裂演化规律,采用液压伺服岩石力学试验系统与破碎矸石压实装置,开展了不同矸石粒径(0~5,5~10,10~15,15~20,20~25,25~30 mm)、轴向应力(2.5,5.0,7.5,10.0 MPa)、加载速率(0.05,0.10,0.50,1.00 mm/s)影响下破碎矸石集料压实试验,研究各因素对矸石集料压缩变形与分形特征的影响;基于PFC3D数值软件建立考虑矸石形状与粒径分布的颗粒流模型,探讨了矸石集料承载过程中能量耗散、力链演化等规律,揭示颗粒形状与粒径级配对矸石集料压实力学特性的影响机制。试验结果表明:矸石集料压缩变形分为孔隙压密、结构调整和弹塑性变形3个阶段,随着轴向应力逐渐增大,矸石集料的大颗粒骨架破坏、中等颗粒滑动移位、小颗粒填充孔隙,颗粒间的接触方式由锐角接触转变为钝角或球面接触;不同加载速率下,矸石集料轴向应力与应变呈幂函数分布,轴向应力和加载速率与破碎矸石分形维数呈对数函数关系;相同载荷下大粒径矸石易发生挤压破碎,矸石颗粒克服变形消耗摩擦能,有利于强化整体的摩擦效应;矸石集料的力链长度随载荷的增大逐渐增长,覆...  相似文献   

11.
连续级配饱和破碎岩石压实特性试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究满足连续级配的饱和破碎岩石压实特性及压实前后岩石粒径的分布规律,利用MTS816.03岩石力学试验系统及自制装置对满足Talbol分布的饱和破碎岩石进行压实试验研究。分析了Talbol指数对割线模量、切线模量、孔隙率、碎胀系数和压实度的影响,讨论了分布系数r随Talbol指数和轴向应力的变化规律,建立了一种反映颗粒粒径分布变化的破碎岩石应力-应变关系。研究表明:破碎岩样在承载过程中,割线模量、切线模量、孔隙率、碎胀系数、压实度与Talbol指数n呈负相关关系。分布系数r随轴向应力的增大而减小;且在轴向应力小于单轴抗压强度的50%时,分布系数r随n呈增大趋势;当轴向应力大于单轴抗压强度的50%时,破碎岩样分布系数r与n的关系出现波动;当轴向应力达到单轴抗压强度的90%后,不同n的破碎岩样分布系数r趋于一致。  相似文献   

12.
冲击荷载下轴压对峰后破裂砂岩力学特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
刘洋  刘长武 《煤炭学报》2018,43(5):1281-1288
针对深部工程围岩常处于峰后破裂状态且遭受动力扰动影响的特点,利用动静组合加载SHPB实验装置对经静态压缩制备的峰后破裂砂岩进行冲击压缩试验,开展一维动静组合加载下破裂岩石的力学特性研究。试验中预先设置轴向静载为8,24和48 MPa三个系列,然后进行不同应变率下冲击加载,研究轴向静载对峰后破裂砂岩动力学特性的影响。对比完整砂岩试验结果表明:轴向静载8 MPa和相近应变率条件下,峰后破裂砂岩组合强度与冲击强度均低于完整砂岩组合强度与冲击强度,两者变形模量相差不大,但峰后破裂砂岩单位体积吸收能大于完整砂岩单位体积吸收能。轴向静载相同时,峰后破裂砂岩组合强度与冲击强度均随着应变率的增大而增大;轴向静载不同时,峰后破裂砂岩组合强度随着轴向荷载的增大而增大,而冲击强度随着轴向静载的增大先增大后减小。随着轴向静载的增大,峰后破裂砂岩单位体积吸收能也随之增大。动静组合加载下峰后破裂砂岩呈剪切破坏模式,且原始裂纹影响破裂面的扩展方向。  相似文献   

13.
赵阳  周宏伟  任伟光  钟江城  刘迪 《煤炭学报》2019,44(5):1495-1507
随着技术的进步以及浅部矿产资源的枯竭,深部矿产资源开发与利用将成为常态。深部岩石的物理力学性质复杂,往往处于循环加卸载的应力条件。深部地下水的压力较大,是深部煤矿的重大安全隐患之一。顶板砂岩是工程最为常见的岩石种类之一,研究其力学性质及渗透规律对深部空间开发利用及矿产资源开采等都具有重要意义。以埋深约1 050 m的平煤12矿顶板砂岩为研究对象,采用循环加卸载声发射渗透实验对其渗透率演化规律进行研究。从应力-应变及损伤特征、耗散能密度占比、累计声发射事件数的增长速度、不同围压条件下的破裂面特征4个方面进行分析,总结了循环荷载下深部工作面顶板砂岩不同应力阶段的渗透率演化特征。实验结果表明:循环应力对深部顶板砂岩的作用可以分为压密作用与压裂作用2种机制,应力水平较低时主要起压密作用,应力水平增大到屈服强度的60%以上时则表现为压裂作用。岩样的渗透率在应力的压密作用下降低,在应力的压裂作用下升高。逐级增大的循环应力作用下,岩样的损伤以及耗散能密度占比均表现为先因压密作用减小,再由压裂作用而增大的演化规律,并且两者与渗透率演化呈正相关关系。整个实验过程中围压对岩样起压密作用,且随着围压的增大,渗透率减小的程度更大。顶板砂岩的破坏形式对破坏时的渗透率具有显著影响。岩样的破裂面角度随着围压增大而减小,岩样破坏时产生的贯通裂隙有轴向与横向2种形式,产生轴向贯通裂隙时的渗透率远大于岩样的初始渗透率,而产生横向贯通裂隙时的渗透率变化较小。综合5个岩样的渗透率演化情况,得到岩石渗透率在逐级增大的循环荷载下具有4个明显的阶段特征。渗透率在较低应力的循环中因压密作用减小;随着循环应力的增大,在压裂及损伤作用下增大;在应力达到岩样抗压强度发生破坏时因破裂面的产生骤增;破坏后因大幅下降的应力的压密作用再次降低。  相似文献   

14.
煤岩体的渗透特性与孔压梯度满足渗流失稳条件时,易引发突水和瓦斯突出灾害。破碎岩体长时间缓慢变形过程中,其渗透特性将随孔隙率的变化而发生改变,且破碎岩体不同粒径的配比会影响其渗透特性。采用Talbol级配理论,利用DDL600电子万能试验机、渗透仪等试验设备,设置五级轴向恒载加压,每级恒载加压下对应4种不同渗透压进行试验,探究不同粒径配比下的破碎砂岩渗透特性。试验结果表明:① 轴向荷载从第1级加载至第5级,随着缸筒内破碎砂岩有效应力的增大,描述渗流速度变化的参数Dv均呈减小趋势;② 恒载变形后期,破碎砂岩随孔隙率减小,其渗透率总体呈减小趋势,而非Darcy流β因子的绝对值增加;③ 不同Talbol幂指数的破碎砂岩,渗透率与非Darcy流β因子的大小存在差异,n=0.5时,破碎砂岩渗透率最小,非Darcy流β因子最大,n=1.0时,破碎砂岩渗透率最大,非Darcy流β因子整体较小。研究可见,破碎砂岩颗粒粒径很小或颗粒破碎细化非常严重时,非Darcy流β因子较容易出现负值,破碎砂岩发生渗流失稳。  相似文献   

15.
为探寻单轴压缩下饱水粉砂岩破裂过程中的红外辐射特性,引入分形理论,通过盒维数法计算出饱水粉砂岩红外温度场的分形维数,结合方差对单轴压缩下饱水粉砂岩的分形特征进行分析。结果表明:红外温度场的分形维数不仅能够表征饱水粉砂岩变形过程中裂纹发育的几何特征,同时也体现了裂纹发育过程中的动力学特征;较方差而言,分形维数对岩石加载过程的红外温度场变化更为敏感;分形维数在弹性阶段以及表征饱水粉砂岩试样破裂的红外前兆方面刻画效果优于方差。  相似文献   

16.
The fractal dimension of geometric pattern of cracks on the surface of plate specimens of three rocks, namely, marble, sandstone and limestone, was calculated using Box counting method. The variation of the fractal dimension D with the stress level in each specimen (containing either a central circular hole or a central slot which makes different angle with the loading direction) as well as the variation of self-similarity range with lithology and grain size were analysed. The results show that the D-value increased during the process of microcracks' initiation and their coalescence into the main fracture but remained unchanged as the macrofracture developed further. The upper scale limit of self similarity range is about two to ten times the grain size for three rocks tested, but shows no relation with the pre-existing rock fabric in the specimens.  相似文献   

17.
为研究不同含水煤样动态拉伸变形破坏过程的能量耗散规律,利用分离式霍普金森压杆(SHPB)试验系统,对不同含水煤样进行冲击加载下的动态劈裂试验,并结合超高速数字图像相关(DIC)试验系统对煤样动态拉伸破坏过程进行观测。基于试验结果分析,获得了煤样破坏过程能量耗散特性随含水率的变化规律,分析了含水率对破碎煤样分形维数的影响。研究结果表明,冲击载荷下应力波是煤样内部大量微损伤结构及原生孔隙、空隙损伤演化的主控因素,煤岩体破碎是一个能量吸收与耗散的过程,随着冲击载荷的增加煤样耗散能密度呈线性增大,但当入射能较小时煤样耗散能密度值相差不大;试样分形维数随加载气压的增加而增加,且增加速率有减小趋势,同种加载气压下,饱和煤样的分形维数最大,干燥煤样的最小;煤样破坏主要以拉伸劈裂为主,破坏裂纹沿加载方向发育,率先在圆盘中部起裂,随后萌生多条次生裂纹,次生裂纹随加载气压的增大而增多,低加载气压下,劈裂裂纹在煤样中的扩展时间较长,扩展速度较慢;基于数字图像技术发现冲击载荷下饱和煤样中部出现多个主应变集中域,且范围逐渐扩大最终沿径向发育贯通。  相似文献   

18.
基于螺旋切削法破碎钴结壳分形行为研究   总被引:1,自引:0,他引:1  
将分形理论应用于滚筒式采矿头截割钴结壳破碎情况的研究, 建立了富钴结壳破碎的分形模型, 推出了分形维数的理论计算公式和利用称重法处理的实际计算公式, 并通过大量实验验证了该模型的正确性。初步测定, 在2 ~4 cm 切削深度内, 破碎钴结壳分布的分形维数为2.5 左右, 由此证明破碎过程中的能耗比较符合邦德的裂缝学说。对破碎情况的研究表明滚筒式采矿头破碎剥离钴结壳的方法是比较理想的。  相似文献   

19.
循环载荷下煤样能量转化与碎块分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
煤矿开采中煤体常处于反复加卸载过程,研究煤体在不同加载速率重复载荷作用下的能量转化与破坏机制对认清煤矿动力灾害本质具有指导意义。利用MTS815.03伺服实验系统,通过单轴循环加卸载试验,结合能量和分形理论,获得了不同加载速率下煤样变形破坏各阶段能量积聚、耗散和释放的转化机制及其与煤样碎块块度分布规律的内在关系,为开展重复载荷作用下煤岩破裂响应及破坏机制的研究提供依据。试验结果表明:煤样能量转化具有明显的阶段性特征,可分为能量初始积累阶段、能量加速积累阶段和能量快速耗散阶段。煤样破坏前耗散能所占比例经历了高—低—高的过程,而弹性能则相反,加载后期弹性能比例下降或耗散能比例的升高,预示着煤样进入加速破坏阶段;能量集聚和释放与加载速率密切相关,随着加载速率的增大,峰值前弹性能所占比例逐渐增加,煤样破坏前更多的能量以弹性能形式储存在煤样体内,岩石破坏后,更多的能量被释放出来,煤样破坏越剧烈,其宏观破坏形态由剪切张拉和劈裂破坏向弹射破坏过渡;循环加卸载下煤样碎块分形特征具有明显的分段性,在小于尺寸阈值范围内具有较好的自相似性特征,不同加载速率下碎块分形维数为2~3,且随加载速率的增加成线性增长;加载速率越大碎块分形维数越大,煤样破碎程度越高,大块碎块所占比例越小,煤样碎块越破碎且单块碎块质量越小,煤样发生动力灾害的危险性越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号