首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper, KMgSO4Cl:Ce3+, KMgSO4Cl:Ce3+,Dy3+, and KMgSO4Cl:Ce3+,Mn2+, new halosulphate phosphors were synthesized by wet chemical method. X-ray powder diffraction (XRD) and photoluminescence (PL) characterization of phosphors have been reported in this paper. The effects of Dy3+ co-doping on the PL characteristics of KMgSO4Cl:Ce phosphor were studied. Energy transfer from Ce3+→Dy3+and Ce3+→Mn2+ results in increase in PL peak intensity suggesting that Ce3+ plays an important role in PL emission in the present matrix. The PL emission spectra have two peaks (482 and 571 nm) and a single peak (564 nm), which could be attributed to the Ce3+→Dy3+and Ce3+→Mn2+ emissions, respectively.  相似文献   

2.
A new phosphor in the Cl-F system doped with Dy, Ce and Eu has been reported. Characterization of this phosphor using XRD, PL and TL techniques is described. Polycrystalline Na6(SO4)2FCl:Dy; Na6(SO4)2FCl:Ce and Na6(SO4)2FCl:Eu phosphors prepared by a solid state diffusion method have been studied for their X-ray diffraction, photoluminescence (PL) and thermoluminescence (TL)characteristics. The PL excitation and emission spectra of phosphors were obtained. Dy3+ emission in the host at 475 and 570 nm is observed due to 4F9/26H15/2 and 4F9/26H13/2 transition, respectively, whereas the PL emission spectra of Na6(SO4)2FCl:Ce phosphor shows the Ce3+ emission at 322 nm due to 5d→4f transition of Ce3+ ion. In Na6(SO4)2FCl:Eu lattice, Eu2+ as well as Eu3+ emissions are observed. The emission of europium ion in this compound exhibits the blue as well as red emission. The TL glow curves of the same compounds have the simple structure with a prominent peak at 150, 175 and 200 °C. TL response, fading, reusability and trapping parameters of the phosphors are also studied. The TL glow curves of γ-irradiated Na6(SO4)2FCl sample show one glow peak indicating that only one set of traps is being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The trapping parameters associated with the prominent glow peak are calculated using Chen’s half width method. The release of hole/electron from defect centers at the characteristic trap site initiates the luminescence process in these materials. The intensity of the TL glow peaks increases with increase of the added γ-ray dose to the samples.  相似文献   

3.
Rare-earth-doped polycrystalline Ca3(PO4)2:Eu, Ca3(PO4)2:Dy and Ca3(PO4)2:Eu,Dy phosphors prepared by a modified solid-state synthesis has been studied for its X-ray diffraction, thermoluminescence (TL) and photoluminescence (PL) characteristics. The PL emission spectra of the phosphor suggest the presence of Eu3+ ion in Ca3(PO4)2:Eu and Dy3+ ion in Ca3(PO4)2:Dy lattice sites. The TL glow curve of the Ca3(PO4)2:Eu compounds has a simple structure with a prominent peak at 228 °C, while Ca3(PO4)2:Dy peaking at 146 and 230 °C. TL sensitivity of phosphors are compared with CaSO4: Dy and found 1.52 and 1.20 times less in Ca3(PO4)2:Eu and Ca3(PO4)2:Dy phosphors, respectively. The Ca3(PO4)2:Eu,Dy phosphors shows switching behavior under two different excitation wavelengths and enhancement in PL intensity of Dy3+ ions were reported. The paper discusses the photoluminescence and thermoluminescence behavior of Eu3+ and Dy3+ ion in Ca3(PO4)2 hosts, it may be applicable to solid-state lighting as well as thermoluminescence dosimetry applications.  相似文献   

4.
Polycrystalline KMgSO4Cl:Eu and Na5(PO4)SO4:Ce phosphors prepared by a wet chemical method have been studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. The TL glow curve of the compound has a prominent peak at 200 °C and may be useful for TL study. TL sensitivity of the KMgSO4Cl:Eu phosphor is found to be 1.7 times less than that of TLD—CaSO4:Dy. The presence of bands at around 420, 435 and 445 nm in the PL emission spectra of the phosphor suggests the presence of Eu2+ in the host compound. Moreover a TL glow curve of the Na5(PO4)SO4:Ce gives a better understanding of the TL mechanism (peaks at 271 and 310 °C) involved in the concerned phosphor. The PL emission spectra are observed at 382 nm for the various concentrations. In this paper we report PL and TL characteristics of KMgSO4Cl:Eu halosulphate and Na5(PO4)SO4:Ce phosphate sulphate phosphors first time.  相似文献   

5.
Thermoluminescence (TL) characteristics of recently developed high sensitive mixed halosulphate phosphors, NaMgSO4Cl: Cu and NaMgSO4Cl: Ce were studied in comparison with CaSO4: Dy in order to assess the possibility of their use in personal monitoring and TLD phosphors at very low dose of 5 Gy. It was found that NaMgSO4Cl: Cu is 5.59 times and NaMgSO4Cl: Ce is 6.18 times more sensitive as compared to standard CaSO4: Dy. UV photo-excited luminescence from Cu to Ce doped NaMgSO4Cl halosulphate phosphors has been investigated. The intense emission of the spectrum is assigned to electronic transitions 3d94s1→3d10 in monovalent copper ion and 5d→4f in Ce3+ ions. Increase in PL peak intensity suggesting that Cu and Ce play an important role in PL emission in the present matrix. These phosphors were synthesized by the wet chemical method. XRD, photoluminescence (PL) and thermoluminescence (TL) characterization of phosphors has been reported in this paper. The preparation of an inexpensive and high sensitive NaMgSO4Cl: Cu and NaMgSO4Cl: Ce with TL glow peaks for different concentrations are observed between 160 and 195 °C and between 200 and 225 °C, respectively, exposed to gamma-rays of 60Co for their thermoluminescence (TL) properties. The glow curves have been recorded at a heating rate of 2 K s?1 and irradiated at a dose rate of 0.995 kGy h?1 for 5 Gy. In present study the trapping parameters such as order of kinetics (b), activation energy (E) and frequency factors (s) have been calculated for the 195 and 200 °C glow peaks of NaMgSO4Cl: Cu and NaMgSO4Cl: Ce, respectively by using Chen's method. The paper discusses the luminescence of Cu+ and Ce3+ by simple method of incorporation in NaMgSO4Cl host.  相似文献   

6.
In this paper we report the combustion synthesis of trivalent rare-earth (RE3+ = Dy, Eu and Ce) activated Sr4Al2O7 phosphor. The prepared phosphors were characterized by the X-ray powder diffraction (XRD) and photoluminescence (PL) techniques. Photoluminescence emission peaks of Sr4Al2O7:Dy3+ phosphor at 474 nm and 578 nm in the blue and yellow region of the spectrum. The prepared Eu3+ doped phosphors were excited by 395 nm then we found that the characteristics emission of europium ions at 615 nm (5D0?7F2) and 592 nm (5D0?7F1). Photoluminescence (PL) peaks situated at wavelengths of 363 and 378 nm in the UV region under excitation at around 326 nm in the Sr4Al2O7:Ce3+ phosphor.  相似文献   

7.
Lithium titanate ceramics doped with three rare earth (RE) ions namely Eu3+, Dy3+ and Tb3+ were synthesized and their photoluminescence (PL) properties were investigated. PL spectra of Eu doped sample showed peaks corresponding to the 5D07Fj (j=0, 1, 2, 3 and 4) transitions under 230 nm excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in a highly asymmetric environment. Dy doped samples showed the Dy3+ emission characteristic due to 4F9/26H15/2 and 4F9/26H13/2 transitions. Their relative intensity ratios also suggested the presence of asymmetric environment around the metal ion. In case of the Tb3+ doped sample blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions was seen. The fluorescence lifetimes of Eu3+, Dy3+ and Tb3+ ions were found to be 645, 900 and 740 μs, respectively. PL intensity of the individual rare earth doped samples was compared with commercial red and green phosphors. It was found that the emission from Eu doped titanate sample was 46% of the commercial red phosphor and in case of the Tb samples it was 30% when excited at 230 nm. However, the synthesized Eu doped titanate sample showed better color purity as compared to the commercial phosphor. The titanate host was doped with all the three rare earths to get white light emission from the system. The individual rare earth ion content was optimized so as to get a near white light emission. The color coordinates of the triple doped systems were evaluated and plotted on the CIE xy diagram. Our results suggest that lithium titanate has enough potential to be a phosphor material.  相似文献   

8.
In the present paper KZnSO4Cl:Ce3+, KZnSO4Cl:Ce3+, Dy3+ and KZnSO4Cl:Ce3+, Mn2+ new halosulfate phosphors were synthesized by wet chemical method. XRD and photoluminescence characterization of phosphors has been reported in this paper.  相似文献   

9.
We have studied the photoluminescence (PL) of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors and the correlation of the PL of those phosphor with their crystal structure. It is found that (Y, Gd)VO4:Eu3+ phosphors have the same crystal structure as YVO4:Eu3+, which is tetragonal with a little different lattice parameters. In the case of (Y, La)VO4:Eu3+ phosphors, however, the gradual change from tetragonal to monoclinic structure of host lattice was observed as the amount of La ion increased. To investigate the PL property of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors, vacuum ultraviolet (VUV) and ultraviolet (UV) excitation were used. The favorable crystal structure for the PL intensity of orthovanadate phosphor under 147 and 254 nm excitation was tetragonal containing Gd ion and under 365 nm excitation was monoclinic containing La ion which might have the lowest site symmetry for Eu3+ ion.  相似文献   

10.
Ce3+ and Tb3+ co-doped Sr2B5O9Cl phosphors with intense green emission were prepared by the conventional high-temperature solid-state reaction technique. A broad band centered at about 315 nm was found in phosphor Sr2B5O9Cl: Ce3+, Tb3+ excitation spectrum, which was attributed to the 4f-5d transition of Ce3+. The typical sharp line emissions ranging from 450 to 650 nm were originated from the 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions. The photoluminescence (PL) intensity of green emission from Tb3+ was enhanced remarkably by co-doping Ce3+ in the Tb3+ solely doped Sr2B5O9Cl phosphor because of the dipole-dipole mechanism resonant energy transfer from Ce3+ to Tb3+ ions. The energy transfer process was investigated in detail. In light of the energy transfer principles, the optimal composition of phosphor with the maximum green light output was established to be Sr1.64Ce0.08Tb0.1Li0.18B5O9Cl by the appropriate adjustment of dopant concentrations. The PL intensity of Tb3+ in the phosphor was enhanced about 40 times than that of the Tb3+ single doped phosphor under the excitation of their optimal excitation wavelengths.  相似文献   

11.
吴春芳  孟燮  李杰  王育华 《物理学报》2009,58(9):6518-6522
在水热法中通过改变磷源以及反应溶剂成功合成出了不同形貌的LaPO4:Dy荧光粉,考察了真空紫外激发下不同形貌的LaPO4:Dy荧光粉的发光性能.结果表明,由于采用的磷源不同,不同形貌的LaPO4:Dy荧光粉的发光强度会受到影响;其次颗粒尺寸的大小也会影响发光强度.而形貌对Dy3+离子占据的格位的对称性影响不大,三种形貌的LaPO4:Dy荧光粉的黄蓝比都在1—1.5之间.从激发光谱的对比中可知LaPO4基质向Dy3+离子传递能量的效率不如向其他稀土离子,如Eu3+离子的效率高,同时在激发光谱中还观察到了较强的Dy3+离子的f-d跃迁激发峰. 关键词: 3+')" href="#">Dy3+ 真空紫外 发光  相似文献   

12.
CaSO4:Dy, is a well known phosphor for radiation dosimetry using thermoluminescence. CaSO4:Eu3+ and CaSO4:Eu2+ phosphors also find applications in radio-photoluminescence dosimetry and photoluminescent liquid crystal displays (PLLCD), respectively. Various syntheses of these phosphors are known. In this paper solid state metathesis of CaSO4:Eu using domestic microwave oven is described for the first time. The synthesis is fast, the entire process being completed within few minutes. The phosphor is characterized using XRD and PL techniques.  相似文献   

13.
Europium doped LaMgAl11O19 phosphor was prepared by the combustion method. The as-prepared and post-treated (1350 °C 10 h 5% H2+95% N2) phosphors were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques. XRD patterns show that LaMgAl11O19:Eu phosphors have hexagonal structure. FT-IR spectrum exhibits absorption bands corresponding to the stretching vibration of AlO4 and AlO6. Morphological studies reveal that this phosphor has faceted plates of varying sizes and shapes. The as-prepared LaMgAl11O19:Eu phosphor consists of both Eu3+ and Eu2+ ions. The phosphor exhibits a bright blue emission at 450 nm (4f65d→4f7 transition of Eu2+). On post-treating the phosphor we are able to enhance the blue emission efficiency by 330%. The process was detected from the evolution of excitation, emission and EPR spectra and the results are discussed.  相似文献   

14.
K2Ca2(SO4)3 doped with Eu, and co-doped with Tb were prepared by the solid state diffusion method. The nanoparticles of these phosphors were also prepared by the chemical co-precipitation method. The formation of the compounds was confirmed by XRD. The particle size was calculated by the broadening of the XRD peaks using Scherrer's formula. The particle size was found to be around 20?nm. Thermoluminescence (TL) was studied to see the effect of co-doping and particle size. Tb3+ co-doping decreases the intensity in the Eu2+ doped phosphor due to the energy transfer and multiple de-excitations through various radiative and non-radiative processes. The K2Ca2(SO4)3:Eu,Tb phosphor is found to be 0.33 times more sensitive than TLD-700H, but around 15 times more than LiF-TLD 100, and 7 times more than CaSO4:Dy. The effective atomic number Zeff is around 15, which is again comparable to CaSO4:Dy.

However, very low sensitivity was observed in the case of nanoparticles. The decrease in the sensitivity is attributed to the particle size effect i.e., the volume-to-surface ratio. Study of photoluminescence (PL) of the material is also carried out.  相似文献   

15.
《Radiation measurements》2000,32(4):343-348
Ultraviolet radiation induced changes in photoluminescence (PL) and thermally stimulated luminescence (TSL) of europium activated calcium sulphate (CaSO4:Eu3+, Eu2+) and terbium doped calcium fluoride (CaF2:Tb3+) phosphors have been studied. PL measurements suggest conversion of Eu3+ to Eu2+ on 254 nm irradiation corresponding to charge transfer band of Eu3+ ions and reduction of Eu2+ ions with 365 nm illumination representing a f–d transition of Eu2+ ions. Similar studies carried out on CaF2:Tb3+ phosphor, however, do not show any significant wavelength specific changes. The integrated TSL output appears to be rate-dependent for both phosphors. The wavelength dependent changes in TSL output observed for CaSO4:Eu phosphor have been correlated with those obtained in PL studies. The changes in TSL and PL characteristics of CaF2:Tb3+ phosphor have been explained on the basis of stabilisation of traps based on matrix specific charge similarities.  相似文献   

16.
The synthesis, X-ray diffraction and photoluminescence characteristics in alkaline halosulphate phosphors, such as KZnSO4Cl:Ce; KMgSO4Cl:Ce; NaMgSO4F:Ce and Na3SO4F:Ce is reported in this paper. The Ce3+ emission in KMgSO4Cl:Ce phosphor is maximum and it may be useful for scintillation applications.  相似文献   

17.
Trivalent dysprosium ions (Dy3+) doped strontium molybdate (SrMoO4) phosphors were synthesized by solid-state reaction and their photoluminescence (PL) properties were investigated. X-ray powder diffraction (XRD) analysis confirmed the formation of SrMoO4:Dy3+. PL measurements indicated that the phosphor exhibited intense emission at 482, 490 (4F9/26H15/2) and 575 nm (4F9/26H13/2) under UV excitation. The effect of the doping concentration of Dy3+in SrMoO4:Dy3+ on the PL was investigated in detail. Na+ ion was a good charge compensator for SrMoO4:Dy3+.  相似文献   

18.
Ce3+ and Dy3+ activated Li2CaGeO4 phosphors were prepared by a solid-state reaction method, and characterized by XRD (X-ray diffraction) and photoluminescence techniques. The characteristic emission bands of Dy3+ due to 4F9/26H15/2 (blue) and 4F9/26H13/2 (yellow) transitions were detected in the emission spectra of Li2CaGeO4:Dy3+. Ce3+ broad band emission was observed in Li2CaGeO4:Ce3+ phosphors at 372 and 400 nm due to 5d→4f transition when excited at 353 nm. Co-doping of Ce3+ enhanced the luminescence of Dy3+ significantly and concentration quenching occurs when Dy3+ is beyond 0.04 mol%. White-light with different hues can be realized by tuning Dy3+ concentration in the phosphors.  相似文献   

19.
This paper reports the preparation of long persistent Sr2Al2SiO7:Eu2+ and Sr2Al2SiO7:Eu2+, Dy3+ phosphors and the comparison of their photoluminescent properties. The silicate phosphors prepared by solid-state reaction routine showed a broad blue emission peaking at 484 nm when activated by UV illumination. Such a bluish-green emission can be attributed to the intrinsic 4f-5d transitions of Eu2+. After the UV source was switched off, long persistent phosphorescence could be observed by naked eyes for both samples in darkness. Afterglow measurements revealed that Eu/Dy codoped phosphor possesses better afterglow properties than the Eu single doped one, since the maximum lifetime (τmax=99 s) of the photons calculated from the decay profile is much larger than that of the Eu single doped phosphor (τmax=82 s). TSL results suggested that the difference in afterglow properties was caused by the difference in the electron traps within the crystal lattice. For Eu/Dy codoped phosphor, the doping of Dy ions produced electron traps with trap depth of 0.52 eV, which is suitable and therefore leads to good persistence. However, in the case of Eu single doped phosphor, the trap depth is 0.88 eV, which is really too deep an energy barrier to overcome, and therefore a poor persistence was observed in the experiment.  相似文献   

20.
The purpose of the present study is to develop an understanding of photoluminescence properties of Dy3+, Mn2+ or Gd3+doped NaCaPO4 phosphors, which have served as efficient phosphors in many industrial applications. The phase formation was confirmed by the X-ray powder diffraction (XRD) measurement. Photoluminescence (PL) excitation spectrum measurement of NaCaPO4:Dy3+ shows this phosphor can be efficiently excited by near-ultraviolet (UV) light from 300 to 400 nm and presents dominant luminescence band centered at 480 nm (blue) and 573 nm (yellow). The PL excitation of NaCaPO4:Mn2+ and Gd3+ under UV wavelength shows the emissions at 520 and 313 nm, respectively. A scanning electron microscope (SEM) shows an average crystallite size in sub-micrometer range. The obtained results show that the phosphors have the potential for application in the lamp industry and medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号