首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a new nonlinear reaction–diffusion–convection system coupled with a system of ordinary differential equations that models a combustion front in a multilayer porous medium. The model includes heat transfer between the layers and heat loss to the external environment. A few assumptions are made to simplify the model, such as incompressibility; then, the unknowns are determined to be the temperature and fuel concentration in each layer. When the fuel concentration in each layer is a known function, we prove the existence and uniqueness of a classical solution for the initial and boundary value problem for the corresponding system. The proof uses a new approach for combustion problems in porous media. We construct monotone iterations of upper and lower solutions and prove that these iterations converge to a unique solution for the problem, first locally and then, in time, globally.  相似文献   

2.
In this article, we present an asymptotic analysis of waves of elastic stress in an infinite solid whose boundary is subject to a rapid thermal load. The problem under consideration couples the wave equation and the heat equation, and the asymptotic approximation of the solution requires three-scaled variables. The asymptotic approximation is supplied with a rigorous remainder estimate and is illustrated numerically.  相似文献   

3.
Differential Equations - We obtain an asymptotic approximation to a moving inner layer (front) solution of an initial–boundary value problem for a singularly perturbed parabolic...  相似文献   

4.
The propagation of a steady saturation front in a double-layer porous material, situated between impenetrable walls, is investigated. The closed system of equations and boundary conditions are written on the assumption that the displacing and displaced phases, the viscosities of which differ considerably, are connected, and that the capillary pressure on the interface is constant. The features of the behaviour of the interface in the neighbourhood of the boundary of the layers are investigated in the case when the layer thicknesses differ considerably. When the permeabilities of the layers differ considerably, asymptotic expressions are obtained for the pressure and shape of the interface, and a comparison is made with the results of a numerical solution of the complete problem and with the known asymptotic relations obtained when using a simplified boundary condition at the interface.  相似文献   

5.
This article deals with approximation of solutions of the Neumann problem in domains, where small tubes are cut out. With an increasing number of tubes some kind of a porous layer inside the domain is approximated. Our aim is to find an asymptotic solution for the separated limit domains. We show that this asymptotics is described by a boundary value problem for the two limit domains, where the solutions for each domain are connected by the boundary conditions.  相似文献   

6.
A singularly perturbed boundary value problem with weak nonlinearity in the case when the degenerate equation has a multiple root is studied. The asymptotic approximation of the solution is constructed by the modified boundary layer function method. Based on the comparison principle, there exist multizonal boundary layers in the neighborhood of the endpoints. The existence of a solution is proved by using the method of asymptotic differential inequalities.  相似文献   

7.
In this paper, we give a rigorous mathematical analysis for a third order nonlinear boundary value problem. The boundary value problem can be applied to steady free convection around a vertical impermeable flat plate in a fluid-saturated porous medium, or steady flow of a power-law fluid induced by impermeable stretching walls in the frame of boundary layer approximation. We establish the uniqueness, existence and nonexistence of (normal) concave solutions or generalized concave solutions to the problem, and obtain some results about boundedness and asymptotic behavior of the (normal) concave solution or the generalized concave solution.  相似文献   

8.
Hypersonic rarefied gas flow over blunt bodies in the transitional flow regime (from continuum to free-molecule) is investigated. Asymptotically correct boundary conditions on the body surface are derived for the full and thin viscous shock layer models. The effect of taking into account the slip velocity and the temperature jump in the boundary condition along the surface on the extension of the limits of applicability of continuum models to high free-stream Knudsen numbers is investigated. Analytic relations are obtained, by an asymptotic method, for the heat transfer coefficient, the skin friction coefficient and the pressure as functions of the free-stream parameters and the geometry of the body in the flow field at low Reynolds number; the values of these coefficients approach their values in free-molecule flow (for unit accommodation coefficient) as the Reynolds number approaches zero. Numerical solutions of the thin viscous shock layer and full viscous shock layer equations, both with the no-slip boundary conditions and with boundary conditions taking into account the effects slip on the surface are obtained by the implicit finite-difference marching method of high accuracy of approximation. The asymptotic and numerical solutions are compared with the results of calculations by the Direct Simulation Monte Carlo method for flow over bodies of different shape and for the free-stream conditions corresponding to altitudes of 75–150 km of the trajectory of the Space Shuttle, and also with the known solutions for the free-molecule flow regine. The areas of applicability of the thin and full viscous shock layer models for calculating the pressure, skin friction and heat transfer on blunt bodies, in the hypersonic gas flow are estimated for various free-stream Knudsen numbers.  相似文献   

9.
The unsteady mixed convection boundary layer flow near the stagnation point on a heated vertical plate embedded in a fluid saturated porous medium is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase in the surface temperature. Both the buoyancy assisting and the buoyancy opposing flow situations are considered with combined effects of the first and second order resistance of solid matrix of non-Darcy porous medium, variable viscosity and radiation. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. The features of the flow and the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The surface shear stress and the heat transfer of the present study are compared with the available results and a good agreement is found.  相似文献   

10.
In this paper, we study the optimal control on the boundary for parabolic equations with rapidly oscillating coefficients arising from the heat transfer problems and the optimal control on the boundary of composite materials or porous media. The multiscale asymptotic expansion of the solution for the problem in the case without any constraints is presented. We derive the proofs of all convergence results.  相似文献   

11.
The problem of the mixed convection boundary-layer flow past an isothermal vertical circular cylinder is considered in both the cases when the buoyancy forces aid and oppose the development of the boundary layer. A series solution is obtained, valid near the leading edge, and this is extended by a numerical solution of the full equations, which in the aiding case, becomes inaccurate downstream. An approximate solution is also derived which gives a good estimate for the heat transfer near the leading edge and has the correct asymptotic form well downstream. In the opposing case, the boundary layer is seen to separate at a finite distance downstream, with, for moderate values of the buoyancy parameter, the numerical solution indicating a regular behaviour near separation.  相似文献   

12.
The linear transformation group approach is developed to simulate problem of hydromagnetic heat transfer by mixed convection along vertical plate in a liquid saturated porous medium in the presence of melting and thermal radiation effects for opposing external flow. The application of a one-parameter transformation group reduces the number of independent variables by one so that the governing partial differential equations with the boundary conditions reduce to an ordinary differential equations with appropriate corresponding conditions. The Runge-Kutta shooting method is used to solve the determining equations of the set of nonlinear ordinary differential equations. are presented in the form of the temperature and flow fields in the melting region within the boundary layer for different parameters entering into the analysis. Also the effects of the pertinent parameters on the rate of the heat transfer in terms of the local Nusselt number at the solid–liquid interface are also discussed.  相似文献   

13.
This article has been retracted. See retraction notice DOI: 10.1002/mma.850 . An unsteady flow and heat transfer in a porous medium of a viscous incompressible fluid over a rotating disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The new self‐similar solution of the Navier–Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier–Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation‐point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large porosity or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also, the surface shear stress in the radial direction and the surface heat transfer decrease with increasing porosity, but the surface shear stress in the tangential direction increases. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This article looks at the slip effects on the flow and heat transfer of a third grade fluid past a porous plate. The resulting equations and boundary conditions are non-linear. The non-linear boundary condition is reduced into a linear one and a series solution of the problem is obtained using the homotopy analysis method (HAM). Variations of interesting parameters are seen on the velocity and temperature profiles.  相似文献   

15.
We describe the asymptotic behaviour of an incompressible viscous free fluid in contact with a porous layer flow through the porous layer surface. This porous layer has a small thickness and consists of thin channels periodically distributed. Two scales are present in this porous medium, one associated to the periodicity of the distribution of the channels and the other to the size of these channels. Proving estimates on the solution of this Stokes problem, we establish a critical link between these two scales. We prove that the limit problem is a Stokes flow in the free domain with further boundary conditions on the basis of the domain which involve an extra velocity, an extra pressure and two second-order tensors. This limit problem is obtained using Γ-convergence methods. We finally consider the case of a Navier–Stokes flow within this context.  相似文献   

16.
The Rayleigh-Taylor (RT) instability at the interface between fluid and fluid saturated sparsely packed porous medium has been investigated making use of boundary layer approximation and Saffmann [8] boundary condition. An analytical solution for dispersion relation is obtained and is numerically evaluated for different values of the parameters. It is shown that RT instability can be controlled by a suitable choice of the thickness of porous layer, ratio of viscosities and the slip parameter.  相似文献   

17.
An analysis is carried out to study the flow, chemical reaction and mass transfer of a steady laminar boundary layer of an electrically conducting and heat generating fluid driven by a continuously moving porous surface embedded in a non-Darcian porous medium in the presence of a transfer magnetic field. The governing partial differential equations are converted into ordinary differential equations by similarity transformation and are solved numerically by using the finite element method. The results obtained are presented graphically for velocity, temperature and concentration profiles, as well as the Sherwood number for various parameters entering into the problem.  相似文献   

18.
A numerical model is developed to study magnetohydrodynamics (MHD) mixed convection from a heated vertical plate embedded in a Newtonian fluid saturated sparsely packed porous medium by considering the variation of permeability, porosity and thermal conductivity. The boundary layer flow in the porous medium is governed by Forchheimer–Brinkman extended Darcy model. The conservation equations that govern the problem are reduced to a system of non-linear ordinary differential equations by using similarity transformations. Because of non-linearity, the governing equations are solved numerically. The effects of magnetic field on velocity and temperature distributions are studied in detail by considering uniform permeability (UP) and variable permeability (VP) of the porous medium and the results are discussed graphically. Besides, skin friction and Nusselt number are also computed for various physical parameters governing the problem under consideration. It is found that the inertial parameter has a significant influence in increasing the flow field and the rate of heat transfer for variable permeability case. The important finding of the present work is that the magnetic field has considerable effects on the boundary layer velocity and on the rate of heat transfer for variable permeability of the porous medium. Further, the results obtained under the limiting conditions were found to be in good agreement with the existing ones.  相似文献   

19.
The role of thermal relaxation in nanoparticle melting is studied using a mathematical model based on the Maxwell–Cattaneo equation for heat conduction. The model is formulated in terms of a two-phase Stefan problem. We consider the cases of the temperature profile being continuous or having a jump across the solid–liquid interface. The jump conditions are derived from the sharp-interface limit of a phase-field model that accounts for variations in the thermal properties between the solid and liquid. The Stefan problem is solved using asymptotic and numerical methods. The analysis reveals that the Fourier-based solution can be recovered from the classical limit of zero relaxation time when either boundary condition is used. However, only the jump condition avoids the onset of unphysical “supersonic” melting, where the speed of the melt front exceeds the finite speed of heat propagation. These results conclusively demonstrate that the jump condition, not the continuity condition, is the most suitable for use in models of phase change based on the Maxwell–Cattaneo equation. Numerical investigations show that thermal relaxation can increase the time required to melt a nanoparticle by more than a factor of ten. Thus, thermal relaxation is an important process to include in models of nanoparticle melting and is expected to be relevant in other rapid phase-change processes.  相似文献   

20.
The effect of chemical reaction and variable viscosity on hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media has been studied in the presence of radiation and magnetic field. The plate surface is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or blowing and has a power-law variation of both the wall temperature and concentration. The similarity solution is used to transform the system of partial differential equations, describing the problem under consideration, into a boundary value problem of coupled ordinary differential equations, and an efficient numerical technique is implemented to solve the reduced system. Numerical calculations are carried out, for various values of the dimensionless parameters of the problem, which include a variable viscosity, chemical reactions, radiation, magnetic field, porous medium and power index of the wall temperature parameters. Comparisons with previously published works are performed and excellent agreement between the results is obtained. The results are presented graphically and the conclusion is drawn that the flow field and other quantities of physical interest are significantly influenced by these parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号