首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
乔宗文  陈涛 《应用化学》2019,36(8):917-923
在制备氯甲基化聚砜(CPS)的基础上,以1,2-二羟基苯-3,5-二磺酸钠为试剂,通过亲核取代反应制备一种侧链末端为磺酸基团的侧链型磺化聚砜(PS-BDS),并采用溶液浇注法制备相应的质子交换膜(PEM),研究温度对PEM性能的影响规律。 结果表明,由于亲水基团远离疏水聚合物主链,该PEM能够形成亲水微区远离疏水微区的相分离结构,亲水区域对主链的影响较小,该PEM在高磺化度下仍能保持较好的尺寸稳定性,随着温度的升高,PEM的吸水率(WU)、吸水溶胀率(SW)和质子传导率(PC)升高,其中PS-BDS-4(离子交换容量为1.57 mmol/g)在25和85 ℃时的SW仅为22.1%和55.0%,甲醇的渗透率(DK)仅为10.17×10-7 cm2/s,低于商业化的Nafion115(16.8×10-7 cm2/s)和Nafion117(23.8×10-7 cm2/s),表现出很好的综合性能。  相似文献   

2.
乔宗文  陈涛 《化学通报》2019,82(5):457-462
以双酚A型聚砜(PS)为基础,与自制的1,4-二氯甲氧基丁烷反应制备氯甲基化聚砜(CPS),接着与2-萘酚-6,8-二磺酸钾(NSK)进行亲核取代反应制备萘磺酸型侧链磺化聚砜(PS-NS)。采用溶液浇注法制备相应的质子交换膜(PEMs),结合前期研究的脂肪磺酸型侧链磺化聚砜(PS-ES)和苯磺酸型侧链磺化聚砜(PS-BS) PEMs,考察侧链结构对PEMs的吸水率、吸水溶胀率和尺寸稳定性的影响关系。结果表明,与主链型芳香聚合物PEMs相比,3种侧链型磺化聚砜PEMs由于亲水基团远离疏水主链,能够形成类似于Nafion膜的相分离结构,在高吸水率下保持更好的尺寸稳定性;在相同的离子交换膜容量(IEC)下,PS-ES、PS-BS和PS-NS膜随着侧链刚性苯环数目的增加,侧链的运动能力减弱,导致PEMs的尺寸稳定性增加,相应的质子传导率减小; PS-ES膜在25℃和85℃的质子传导率分别达到0. 072和0. 141 S/cm,PS-NS在25℃和85℃的尺寸溶胀性仅为21. 8%和51. 5%,性能与商业化的Nafion115膜十分接近。  相似文献   

3.
在制备氯甲基化聚砜(CMPSF)的基础上,以对羟基苯磺酸钠(HBSS)和羟基苯二磺酸钠(HBDSS)为亲核试剂,通过亲核取代反应,在聚砜(PSF)主链上分别键联了以苯磺酸根(BSS)和苯二磺酸根(BDSS)基团为末端基的侧链,制得了亲水磺酸根基团与疏水主链"微相分离"结构的2种侧链型磺化聚砜PSF-BSS和PSF-BDSS,并优化了制备条件.在对磺化聚砜产物进行充分表征(FTIR和1H-NMR谱)的基础上,采用流延成膜法制备了质子交换膜,测定了质子交换膜的基本性能,重点考察了质子交换膜"芳香性"主链和亲疏水微区"相分离"这2种结构因素对交换膜性能的影响.实验结果表明,在极性较强的溶剂中,CMPSF与羟基苯磺酸钠可顺利地发生亲核取代反应,于100℃经40 h反应可制得磺酸根键合量分别为2.07 mmol/g和2.11 mmol/g的磺化聚砜PSF-BSS和PSF-BDSS.所制备的质子交换薄膜具有较高的质子传导率(PSF-BDSS交换膜室温为4.7×10-2S/cm,80℃为8.1×10-2S/cm),优良的尺寸稳定性(室温溶胀率为8.6%,80℃溶胀率为30%),且具有良好的热稳定性与抗氧化稳定性.  相似文献   

4.
乔宗文  赵本波 《应用化学》2020,37(6):658-665
以双酚A型聚砜(PSF)为基质材料,通过傅-克烷基化反应在PSF主链引入—NCO活性基团,制备乙基异氰酸化聚砜(PS-SA)。 在制备PS-SA的基础上,采用两步一锅法,PS-SA与2-萘酚-6,8-二磺酸钾通过亲核取代反应,制备一种侧链含有萘环的萘磺酸型磺化聚砜PS-NS,充分表征聚合物的化学结构,以溶液浇注的方法制备质子交换膜,研究了温度对PS-NS膜的吸水率(WU,Water Uptaking)、吸水溶胀性(Swelling Ratio)、质子传导率(Proton Conductivity)等基本性能的影响。 结果表明,PS-NS膜由于亲水基团距离较远,能够很容易形成相分离结构,所制备的质子交换膜高WU下尺寸稳定性仍然很高,其中PS-NS-4膜(磺酸基团键合量为1.42 mmol/g)在25和85 ℃的WU高达27.2%和40.3%,但是相应的吸水溶胀性仅为25.2%和57.2%,与相同条件下Nafion115膜的性能十分接近。  相似文献   

5.
以聚砜(PS)和自制的1,4-二氯甲氧基丁烷(BCD)为氯甲基化试剂通过Fridel-Crafts烷基反应制备氯甲基化聚砜(CPS),紧接着氯甲基与2-萘酚-6,8-二磺酸钾(NSK)试剂通过亲核取代反应制备一种萘磺酸型磺化聚砜(PS-NS),在用红外和核磁氢谱充分表征的基础上制备一系列磺酸基团键合量不同的PS-NS质子交换膜(分别为PS-NS-1,PS-NS-2,PS-NS-3)重点研究温度对质子交换膜性能的影响规律。研究结果表明:由于亲水基团与疏水主链距离较远,能够形成类似于Nafion膜的微相分离结构,使得该质子交换膜在高磺化度下仍能保持高的尺寸稳定性,同时随着温度升高,质子交换膜的吸水率、溶胀性以及质子传导率增加,PS-NS-3在25℃和85℃的吸水率为21. 3%和42. 7%,但是溶胀率仅为22. 2%和50. 3%,与商业化Nafion115膜(24. 9%和55. 0%)的性能十分接近,表现出很好的尺寸稳定性。  相似文献   

6.
采用两步一锅法,在聚砜(PSF)主链上键联了末端基为磺酸根基团的侧链,获得了疏水主链与磺酸根基团"微相分离"结构的磺化改性PSF。以氯乙基异氰酸酯(CEIC)为亲电试剂,使PSF主链上的苯环发生付-克烷基化反应,制得侧链含有活性基团—NCO的中间产物聚合物PSFeic;通过活性基团—NCO与对羟基苯磺酸钠(HBSAS)生成氨基甲酸酯的较快速的反应,获得了侧链末端为磺酸根基团的磺化改性聚砜PSF-sas。采用FT-IR、1 H-NMR及紫外分光光度法对目标产物聚合物PSF-sas的化学结构进行了表征。以PSF-sas为膜材,采用流延法制备了PSF阳离子交换膜,测定了交换膜的基本性能,包括离子交换容量、吸水率及质子传导率。研究结果表明,在路易斯酸催化剂作用下,CEIC与PSF主链上苯环之间的付-克烷基化反应可顺利进行,生成中间聚合物产物PSF-eic;以强极性的二甲基乙酰胺(DMAC)为溶剂,反应24h,PSF-eic分子链中乙基异氰酸酯(eic)的键合量可达2.43mmol/g。在此基础上进行第2步反应,可得到磺酸根基团含量为2.23mmol/g的目标产物PSF-sas,所制备的阳离子交换膜,具有高的离子交换容量,适当的吸水率与高的质子传导率。  相似文献   

7.
以氯乙酰氯和氯丁酰氯为亲电试剂,通过Friedel-Crafts酰基化反应,在聚砜(PSF)主链引入了含氯的且碳原子数目不同的(分别为2和4)柔性侧链,然后以对羟基苯磺酸钠(HBSS)为试剂,通过亲核取代反应制备了侧链型磺化聚砜2PSF-BSS和4PSF-BSS。采用佛尔哈德分析法、红外光谱(FT-IR)以及核磁氢谱(1HNMR)对侧链型磺化聚砜的化学结构和性能进行了表征,重点考察主要因素对Friedel-Crafts酰基化和亲核取代反应的影响,实验结果表明:以无水Al Cl3为催化剂,CH2Cl2为反应溶剂,反应温度50℃,CAPSF和CBPSF中氯含量分别达到2.03mmol/g和2.07mmol/g,第2步亲核取代反应遵循SN1机理,在强极性溶剂DMSO中磺酸基键合量分别为1.48mmol/g和1.46mmol/g。同时初步探索侧链链长对质子交换膜的质子传导率的影响,随着侧链长度的增长,侧链的柔性增强,亲水微区与疏水微区微相分离的程度增强,导致交换膜的质子传导率增大。  相似文献   

8.
通过溶液共混法制备了不同磺化聚乙烯醇(SPVA)含量的侧链型磺化聚芳醚酮/磺化聚乙烯醇(S-SPAEK/SPVA)复合膜. 应用红外光谱(FTIR)对复合膜进行了表征, 扫描电镜(SEM)显示SPVA均匀分布在复合膜中. 通过对复合膜的性能测试发现该系列复合膜具有良好的热性能、较高的吸水率和保水能力. SPVA中的羟基能有效地阻碍甲醇的透过, 甲醇渗透系数从S-SPAEK/SPVA5 复合膜的7.9×10-7 cm2·s-1降低到S-SPAEK/SPVA30的1.3×10-7 cm2·s-1, 比S-SPAEK膜的11.5×10-7 cm2·s-1降低了一个数量级. SPVA的引入增加了亲水基团数量, 增加了复合膜的吸水和保水能力, 有利于质子按照“Vehicle”机理和“Grotthuss”机理进行传递, 柔软的SPVA链段与S-SPAEK侧链聚集成亲水相区, 形成连续的质子传输通道, 提高了复合膜的质子传导率. 在25 和80℃ 时, S-SPAEK/SPVA30 复合膜的质子传导率分别达到了0.071 和0.095 S·cm-1. 可见,S-SPAEK/SPVA复合膜有望在直接甲醇燃料电池中得到应用.  相似文献   

9.
制备了一类侧链型含氟磺化聚醚砜(s SPFES)与磺化聚酰亚胺(SPI)共混质子交换膜(s SPFES/SPI),研究了其吸水率、尺寸变化、质子电导率及稳定性等性能.结果表明,2种磺化聚合物以三乙胺盐型溶液共混及铸膜时相容性良好,制备的s SPFES/SPI共混质子交换膜结构均一,透明结实,离子交换容量为1.76~1.88 mmol/g.s SPFES/SPI共混质子交换膜表现出横向低于纵向的各向异性尺寸变化特性,在60℃水中横向尺寸变化率低于10%,经140℃加压水处理24 h后仍能保持较好的机械强度,质量损失低于6.1%.当温度高于50℃时,完全水合状态下的s SPFES/SPI共混质子交换膜的质子电导率均达到0.1 S/cm.  相似文献   

10.
在制备氯乙酰基化聚砜(CAPS)和氯丁酰基化聚砜(CBPS)的基础上,以对羟基苯磺酸钠(HBS)为试剂,通过亲核取代反应制备侧链长度不同的两种侧链型磺化聚砜2PS-BS和4PS-BS (侧链碳原子数目分别是2和4),利用FT-IR和1H-NMR表征它们的化学结构后,采用溶液浇注法制备它们的质子交换膜(PEM),同时结合我们前期制备的侧链型磺化聚砜1PS-BS质子交换膜,研究柔性侧链的长度对PEM性能的影响。研究结果显示,与主链型PEM相比,1PS-BS、2PS-BS和4PS-BS由于亲水基团远离疏水主链,能够形成类似于Nafion膜的相分离结构,相应的PEM在高吸水率下仍能保持优越的尺寸稳定性和耐氧化性能。在相同的温度和IEC下,3种PEM随着柔性侧链长度的增加,PEM的相分离程度增强,进而导致PEM的尺寸稳定性、耐氧化性能和质子传导率增强,其中4PS-BS-4膜在25℃时的吸水溶胀性仅为7.1%,优于相同条件下Nafion115和Nafion117膜(室温溶胀率分别为9.5%和11%),相应的质子传导率达到了0.049S/cm,满足燃料电池的实际应用要求。  相似文献   

11.
以二氟二苯甲酮、双酚A和邻甲基氢醌为单体先经缩聚反应生成聚醚醚酮(PEEK),PEEK经修饰合成含有溴异丙基侧基的聚醚醚酮,以此为原子转移自由基聚合(ATRP)大分子引发剂,通过ATRP法聚合,在PEEK主链上接枝引入聚苯乙烯磺酸钠侧链,得到侧链型PEEK接枝聚合物(PEEK-g-StSO3Na)。 用傅里叶变换红外(FTIR) 光谱、核磁共振氢谱(1H NMR)、热重分析(TG)和扫描电子显微镜(SEM)等技术手段对PEEK-g-StSO3Na的结构进行表征。 结果表明,苯乙烯磺酸钠成功的被接枝到聚醚醚酮主链上,PEEK-g-StSO3Na膜具有明显的亲水疏水微相分离结构,磺酸基团相互聚集形成离子通道,离子交换容量为2.034 mmol/g的PEEK-g-StSO3Na膜的电导率为8.34×10-2 S/cm,膜的尺寸稳定性优于Nafion 117。  相似文献   

12.
利用含溴苯侧基的聚芳醚砜(PES-Br)和1,1,2,2-四氟-2-(1,1,2,2-四氟-2-碘乙氧基)乙烷磺酸钾(PSA-K)进行Ullman偶联反应, 制备了新型含全氟磺酸侧链的聚芳醚砜(PES-PSA), 全氟磺酸的引入量为50%. 在离子交换容量(IEC)为0.907 meq./g, 80 ℃, 相对湿度为100%时, PES-PSA质子传导率达到0.039 S/cm, 表现出较高的质子传导能力. 其较低的IEC值使膜材料表现出良好的热稳定性和尺寸稳定性.  相似文献   

13.
以β晶型聚丙烯(PP)经双轴拉伸制备的新型聚丙烯微孔膜(Aspor膜)为基膜,采用浸吸法制血具有两相连续、贯穿的互穿聚合物网络(IPN)为膜体结构的聚丙烯/聚(苯乙烯-二乙烯苯)磺酸型阳离子交换膜。应用SEM、XPS和WAXD手段,分析研究了PP基膜和离子交换膜(IEM)的IPN膜体结构及其力学性能的关系。  相似文献   

14.
以β-萘甲醛和2,6-二甲基苯酚为原料,合成出一种新型双酚单体.以此双酚单体和二氟单体(4,4'-二氟二苯甲酮或4,4'-二氟二苯砜)为基础,通过亲核取代反应,制备出两种高分子量聚芳醚.用氯磺酸对聚合物进行磺化,得到了2种磺酸基在侧链萘环上的磺化聚芳醚.该磺化聚芳醚能溶于N,N-二甲基乙酰胺(DMAc)、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)等常见的有机溶剂,通过溶液浇注的方法制备出光滑、柔韧的膜.用红外光谱(FTIR),核磁共振谱(1H-NMR)表征了聚合物结构.用示差扫描量热仪(DSC),热重分析仪(TGA)研究了聚合物的耐热性能.结果表明,这些侧链磺化的质子交换膜具有高的电导率(4.2×10-2S/cm)、高的机械强度、低的溶胀率和较好的氧化稳定性.  相似文献   

15.
聚砜阴离子交换膜的制备及结构与性能研究   总被引:3,自引:0,他引:3  
以1,4-二氯甲氧基丁烷(BCMB)为氯甲基化试剂,使聚砜(PSF)发生氯甲基化反应,制得了氯甲基化聚砜(CMPSF),考察了主要因素对聚砜氯甲基化反应的影响,并使用FTIR及1H-NMR等法对CMPSF的化学结构进行了表征.采用三乙胺(TEA)、三丙胺(TPA)及三丁胺(TBA)等3种叔胺对CMPSF进行了季铵化反应,并以4,4′-联吡啶为交联剂实施了交联反应,制备了聚砜阴离子交换膜(PSFAEM).测定了交换膜PSFAEM的主要性能,包括离子交换容量(IEC)、含水量(WC)及膜电阻(Rm).实验结果表明,使用BCMB,聚砜的氯甲基化反应可顺利进行,以氯仿为溶剂,以SnCl4为Lewis酸催化剂,可制得氯甲基化程度为1.75mmol/g的CMPSF.交换膜PSFAEM的IEC、WC及Rm与季铵化反应时间及叔胺的种类密切相关.季铵化反应时间相同时,采用烷基中碳原子数少的叔胺TEA所制备的交换膜具有高的IEC与WC,低的Rm;使用同一种叔胺时,随季铵化反应时间的增长,交换膜的IEC与WC增大,Rm减小.  相似文献   

16.
采用芳香亲核取代反应及溶液铸膜法,制备了一系列具有不同离子交换容量(IEC)的侧链型磺化聚芳醚砜(s SPFAE)阳离子交换膜,并作为分离膜应用于微生物燃料电池(MFC).研究了s SPFAE膜在双室MFC中产电性能并与商用阳离子交换膜进行了对比.s SPFAE膜的IEC为0.97~1.56 mmol/g,厚度约为80μm,在30℃时吸水率为20.9%~41.7%,电导率达到27.3~60.5 m S/cm,高于商用膜(22 m S/cm,420μm).对采用s SPFAE膜的MFC,根据峰功率密度法及极化曲线斜率法得到的MFC内阻约为29~64Ω,随着IEC的升高而降低,库伦效率达到47.7%~55%,其中s SPFAE-1.56膜的最大功率密度达到657.3 m W/m~2,且s SPFAE膜均表现出优于商用膜的产电性能.利用模拟等效电路对整个MFC系统进行EIS分析,结果表明阳极扩散内阻占这类MFC系统总内阻的87%~90%.结合循环伏安曲线、电化学阻抗谱测试及电极电势分析结果,表明分离膜对两极室间物质传递及阳极扩散阻抗有较大的影响.  相似文献   

17.
在含氟聚芳醚侧链引入磺化萘酚基团,制备了一类侧链磺化型含氟聚芳醚(s SPFAE),采用溶液浇铸法制膜并对膜进行了表征和分析.制备的膜材料离子交换容量达到1.42~2.03 mmol/g,均透明柔韧,杨氏模量高于1.0 GPa,拉伸应变达到66%~105%.吸水性及膨胀性测试结果表明该系列膜具有较低的吸水率和良好的尺寸稳定性,在测试温度范围内(30~90℃)吸水率为21%~51%,尺寸变化率低于7%.s SPFAE膜具有良好的热稳定性及氧化稳定性,TGA测试中320~360℃时的重量损失低于5%,在Fenton溶液中80℃处理1 h后的失重率小于2%.同时,该系列膜表现出较高的电导率水平,如SPFAE-0.8膜(IEC=2.03 mmol/g)在80℃时电导率达到217 m S/cm.  相似文献   

18.
设计、合成了一种含氰基双氯单体,其结构特点是氰基分布在3个以间位醚键相连的苯环上。以此单体和2,5-二氯-3'-磺酸钠二苯甲酮为原料,利用Ni(0)催化偶联反应制备了微嵌段型质子交换膜材料(中等长度磺化聚苯-三氰基聚苯醚酮共聚物(m-SPP-co-PAEK 3CN x),x代表聚合物的离子交换容量)。结果表明,与相同离子交换容量的磺化聚合物相比,该类聚合物膜表现出较低的吸水、溶胀率和较低的甲醇渗透性能。以离子交换容量2.16为例,80℃下,m-SPP-co-PAEK 3CN 2.16的吸水率、溶胀率分别为29.7%、28.2%,而SPP-co-PAEK MO 2.33的吸水率、溶胀率分别为80.2%、37.2%。25℃下,二者的甲醇渗透系数分别为2.38和7.20。聚合物骨架结构中存在丰富的氰基基团,导致膜具有良好的尺寸稳定性和较低的甲醇渗透性能。基于这些优异的性能,新制备的膜材料在燃料电池领域显示了潜在的应用前景。  相似文献   

19.
掺杂纳米SiO2的PVDF-g-PSSA质子交换膜   总被引:1,自引:0,他引:1  
申益  席靖宇  邱新平  朱文涛  陈立泉 《化学学报》2007,65(14):1318-1324
以聚偏氟乙烯(PVDF)为骨架, 采用溶液接枝苯乙烯磺酸, 合成了掺杂纳米SiO2颗粒的复合质子交换膜(PVDF/xSiO2-g-PSSA). 利用红外光谱、热失重分析方法、扫描电镜, 对膜的结构、热稳定性、表面及断面形态进行了表征. 考察了膜的吸水率、电导率、甲醇渗透性等性质. 结果表明, 纳米SiO2颗粒能提高膜的阻醇性能, 掺杂质量分数10%的适量SiO2颗粒所得的复合膜的甲醇渗透系数达1.0×10-7 cm2/s, 低于聚偏氟乙烯接枝苯乙烯磺酸(PVDF-g-PSSA)膜的1.7×10-7 cm2/s, 仅为Nafion-117的渗透系数的二十分之一. PVDF/10% SiO2-g-PSSA复合膜具有较高的选择性, 在直接甲醇燃料电池中具有良好的应用前景.  相似文献   

20.
曹桐  彭军  冯炎  刘孝波  黄宇敏 《应用化学》2022,39(12):1783-1802
燃料电池是以氢气、甲醇等作为燃料的一种新型能量转化装置,其中质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell, PEMFC)凭借其能量功率高、启动速度快和使用寿命长等优点已经在移动电源、潜艇和电动汽车等领域得到了广泛应用。质子交换膜(Proton Exchange Membrane, PEM)对PEMFC的性能影响最大,高效的PEMFC需要PEM具有高的质子电导率、良好的热稳定性和机械性能、低燃料渗透率以及优异的物理化学稳定性等。目前市面上多数使用的均是具有优异质子电导率的Nafion系列膜,但其存在制备困难、成本昂贵、质子电导率严重依赖湿度等缺点,在一定程度上限制了其发展。为了让PEM有更多的选择,科学家一直专注于使用新材料替代Nafion膜。近年来,科学家们模拟Nafion结构,通过合成各种侧链含磺酸基团的聚芳醚结构,使得亲水基团磺酸基和疏水基团之间形成微相分离结构,从而获得了一系列具有优异综合性能的PEM。本文将重点对侧链烷基磺化型、侧链磺化嵌段型、侧链局部密集磺化型、侧链磺化交联型和侧链磺化复合型这几种常见策略的合成方法及性能进行了综述,最后展望了侧链磺化聚芳醚在PEM领域的优势及发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号