首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A composite control strategy for a two-link flexible manipulator is analyzed which combines hub actuation with distributed vibration control. The hub actuation is based upon an integral manifold approach in which the system dynamics are approximately linearized to any order of a small parameter E representing stiffness of the robot arms. A polymer film is proposed as a distributed actuator to dampen vibrations due to elasticity in the links. Simulation results are provided which show that the addition of the distributed actuator significantly reduces the displacement and velocity of the first flexible mode in each link compared to hub actuation alone. Editor: T. Vincent  相似文献   

2.
In this paper, the positioning of a long flexible manipulator on a moving platform is investigated. The problem is to position the gripper at a requested relative distance in front of an object with unknown location. For this purpose, the gripper is equipped with a range camera giving the distance to surrounding objects within, ∼1% and with a sampling rate above 1 kHz. The range measurements are used in combination with internal angle measurements from joint encoders to estimate both the flexibility in the mechanical construction and the relative distance from gripper to object. This is solved satisfactorily by an extended Kalman filter (EKF). For the motion control of the manipulator, a time-scaled feedback controller is suggested. A fast inner loop is used to damp out oscillations and reject disturbances, both from the platform and the manipulator. An outer control loop, with a lower closed-loop bandwidth, then steers the gripper, based on the range measurements, to the requested final position in front of the object. This loop assumes a stationary and rigid platform and a rigid manipulator. At this moment, only simulations of a flexible manipulator on a rigid platform have been studied. However, the results show that the flexibility can be estimated from indirect measurements of the range to the object and the joint angles. Also, good damping and disturbance rejection are achieved, as long as the bandwidth of the actuators is sufficiently high compared to the oscillation. The use of range measurements of the surrounding objects makes the positioning task very robust against an uncertain platform position.  相似文献   

3.
This paper addresses the inertia‐free attitude control problem for flexible spacecraft in the presence of inertia uncertainties, external disturbances, actuator faults, measurement errors, and input magnitude and rate constraints (MRCs). By analyzing the influence of external disturbances, faulty signals, and actual inertial matrix, a lumped disturbance is reconstructed to facilitate the controller design. Then, a new intermediate observer is developed to estimate the attitude and modal information and the lumped disturbance. The Lyapunov stability analysis shows that the developed controller can achieve the objectives of the attitude stabilization and vibration suppression with input MRCs. Finally, numerical simulations are performed to demonstrate the effectiveness and superiority of the proposed control method.  相似文献   

4.
This article addresses the problem of inverse dynamics for three-dimensional flexible manipulators with both lumped and distributed actuators. A recursive procedure is presented for computing the lumped inverse dynamic torques and the distributed piezoelectric actuator inputs for simultaneously tracking a prescribed end-point trajectory and reducing induced vibrations in the manipulator. The procedure sequentially solves for the non-causal inverse dynamic torques and piezoelectric voltages applied to each link in the manipulator, starting from the last element in the chain and proceeding to the base element. The method allows trajectory tracking wherein controllability of the structural vibrations is assured in all possible configurations through the use of only one motor at each intermediate joint and three motors at the ground. Numerical simulation shows that the elastic vibrations can be reduced significantly through the use of distributed actuators while at the same time satisfying the trajectory tracking requirement through the use of inverse dynamics. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Pietro Falco 《Advanced Robotics》2014,28(21):1431-1444
The paper proposes a method to improve flexibility of the motion planning process for mobile manipulators. The approach is based on the exploitation of perception data available only from simple proximity sensors distributed on the robot. Such data are used to correct pre-planned motions to cope with uncertainties and dynamic changes of the scene at execution time. The algorithm computes robot motion commands aimed at fulfilling the mission by combining two tasks at the same time, i.e. following the planned end-effector path and avoiding obstacles in the environment, by exploiting robot redundancy as well as handling priorities among tasks. Moreover, a technique to smoothly switch between the tasks is presented. To show the effectiveness of the method, four experimental case studies have been presented consisting in a place task executed by a mobile manipulator in an increasingly cluttered scene.  相似文献   

6.
The application of joint-torque sensory feedback (JTF) in robot control has been proposed in the past that, unlike the model-based controllers, does not require the dynamic model of the robot links. JTF, however, assumes precise measurement of joint torque and accurate friction model of the joints. This paper presents an adaptive JTF control algorithm that does not rely on these assumptions. First, the robot dynamics with JTF is presented in a standard form with a minimum number of parameters, where the inertia matrix appears symmetric and positive definite. Second, an adaptive JTF control law is developed that requires only incorporation of uncalibrated joint-torque signals, i.e., the gains and offsets of multiple sensors are unknown. Also, all physical parameters of the joints including inertia of the rotors, link twist angles, and friction parameters are assumed to be unknown to the controller. The stability analysis of the control system is presented. Experimental results demonstrating the tracking performance of the proposed adaptive JTF controller are presented.  相似文献   

7.
In this paper, we propose a boundary control strategy for vibration suppression of two flexible wings. As a basic approach, Hamilton's principle is used to ascertain the system dynamic model, which includes governing equations – four partial differential equations and boundary conditions – several ordinary differential equations. Considering the coupled bending and torsional deformations of flexible wings, boundary control force and torque act on the fuselage to regulate unexpected deformations of flexible wings. Then, we present the stability analysis of the closed-loop system through Lyapunov's direct method. Simulations are carried out by using finite difference method. The simulation experimental results illustrate the significant effect of the developed control strategies.  相似文献   

8.
基于分布参数系统理论,建立机械臂协调操作柔性负载系统的动力学模型.利用奇异摄动方法,对动力学模型进行双时标分解,得到一个表征系统大范围刚性运动的集中参数慢变子系统和表征系统弹性振动的分布参数快变子系统.分别设计了自适应模糊滑模慢变控制器和振动反馈快变控制器,并通过分析快变子系统主算子及其生成C_O半群的特性,证明了分布参数闭环子系统的渐近稳定性.最后,通过仿真实验验证了所提出方法的有效性.  相似文献   

9.
This article focuses on the implementation of a dual-mode controller for the maneuver of a two-axis flexible robotic arm. The joint angle trajectory tracking is accomplished by proportional and derivative and feedforward controllers. Based on the pole placement technique, a linear stabilizer is designed for elastic mode stabilization in the plane perpendicular to each joint axis. The stabilizer is switched on when the trajectory reaches the vicinity of the terminal state. The effect of switching time of the stabilizer and varying payload on arm vibration are investigated. With the proposed control system, accurate joint angle tracking and elastic mode stabilization can be accomplished. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Control of vibration of flexible structures has been of remarkable research attention in the last decade. Conventional control methods have not been widely successful due to the dynamic complexity of flexible structures. The literature has recently seen an emergence of demand of soft computing techniques in modelling and control of such dynamic systems. However, the form of soft computing required depends on the nature of the application. This paper accordingly presents investigations into modelling and control techniques based on soft computing methods for vibration suppression of two-dimensional flexible plate structures. The design and analysis of an active vibration control (AVC) system utilising soft computing techniques including neural networks and fuzzy logic is presented. The investigation involves soft computing approach with single-input single-output (SISO) and single-input multi-output (SIMO) AVC structures. A comprehensive comparative assessment of the approaches in terms of performance and design efficiency is also provided. Investigations reveal that the developed soft computing-based AVC system performs very well in the suppression of vibration of a flexible plate structure. It is also shown that the developed SIMO AVC system performs much better in the suppression of vibration of a flexible plate structure in comparison to the SISO AVC system.  相似文献   

11.
Distributed dynamic identification and vibration control of high-performance flexible structures has drawn much attention in recent years. This article presents an analytical and finite-element study on a distributed piezoelectric sensor and distributed actuator coupled with flexible shells and plates. The integrated piezoelectric sensor/actuator can monitor the oscillation as well as actively control the structural vibration by the direct/converse piezoelectric effects, respectively. Based on Maxwell's equations and Love's assumptions, new theories on distributed sensing and active vibration control of a generic shell using the distributed piezoelectrics are derived. These theories can be easily simplified to account for plates, cylinders, beams, etc. A new piezoelectric finite element is also formulated using the variational principle and Hamilton's principle. A piezoelectric micropositioning device was first studied; analytical solutions are compared closely with experimental and finite-element results. Distributed vibration identification and control of a zero-curvature shell-a plate-are also investigated.  相似文献   

12.
This paper presents a novel adaptive control scheme for a lightweight manipulator arm governed by electric motors. The controller design is based on the dynamic model of the arm in a quasi-static approximation which consists of the transports subsystem and the motor equations corrected for the elastic compliance of the plant. A passivity property of the flexible electromechanical system is established and an adaptive motor controller is developed which contains the rigid manipulator controller as a part. The motor controller updates all unknown rigid manipulator parameters as well as elastic parameters and ensures global asymptotic stability of the tracking errors with all signals in the system remaining bounded. Projecting of parameter estimates is used in the update law to avoid possible singularities when generating control input. Simulation results for a single-link elastic arm confirm the validity and demonstrate advantages of the proposed method.  相似文献   

13.
Model-based feedback control of vibration in flexible structures can be complicated by the possibility that interaction with an external body occurs. If not accounted for, instability or poor performance may result. In this paper, a method is proposed for achieving robust vibration control of flexible structures under contact. The method uses robust linear state feedback, coupled with a state estimation scheme utilizing contact force measurement. Uncertain contact characteristics are modelled by a sector-bounded non-linear function, such that state feedback gains can be synthesized using a matrix inequality formulation of the Popov stability criterion. A separation theorem is used to establish a robust H2 cost bound for the closed loop system. Experimental results from a multi-mode flexible structure testbed confirm that vibration attenuation and stability can be maintained over a broad range of contact characteristics, in terms of compliance and clearance.  相似文献   

14.
This paper investigates the problem of feedback control design with vibration suppression for a flexible air-breathing hypersonic vehicle (FAHV). FAHV includes intricate coupling between the engine and flight dynamics, as well as complex interplay between flexible and rigid modes, which results in an intractable system for the control design. In this paper, a longitudinal model, which is described by a coupled system of ordinary differential equations (ODEs) and partial differential equations (PDEs), is adopted. Firstly, a linearized ODE model for the rigid part is established around the trim condition, while vibration of the fuselage is described by PDEs. Secondly, based on the Lyapunov direct method, a control law via ODE state feedback and PDE boundary output feedback is designed for the system such that the closed-loop exponential stability is ensured. Finally, simulation results are given to illustrate the effectiveness of the proposed design method.  相似文献   

15.
This paper approaches the control of Large Space Structures (LSS) by modulating the impedance of a joint to obtain desired vibration suppression. The suppression of several vibration modes cannot be done efficiently with a constant gain control system, i.e. a constant joint impedance. A dynamic active impedance controller is required and is proposed herein for this purpose. The method is applied to a flexible beam which is modelled by the Euler-Bernoulli equation. The experimental set-up and its operation can emulate a typical slew manoeuvre about a fixed axis. The boundary conditions for the beam in this case are defined for a servomotor at one end and a free condition at the other end. The beam parameters are experimentally identified for the first three modes of vibration. Active impedances are determined separately for the rigid mode and the first three modes of vibration using a pole placement method. The four different active impedances are realized using gain scheduling while transitions between gains follow a cubic polynomial of time. The duration of application of each impedance is determined based on their respective settling time. Preliminary experiments establish the minimum duration for each transition from one active impedance to another in suppressing beam vibrations.  相似文献   

16.
基于DSP/FPGA的反步法阻抗控制柔性关节机械臂   总被引:2,自引:1,他引:1  
针对柔性关节机械臂与环境接触时的柔顺控制问题,提出一种反步法阻抗控制方法,并基于李雅普诺夫稳定性理论证明了控制器的稳定性.该方法是在建立柔性关节机器人模型的基础上,将李雅普诺夫函数选取与控制器设计相结合的一种回归设计方法.它从系统的最低阶次微分方程开始,逐步设计满足要求的虚拟控制,最终设计出真正的控制器.轨迹跟踪和阻抗控制实验结果表明,该方法是有效而可行的.  相似文献   

17.
This work proposes an adaptive control scheme applied to single link-flexible manipulators, which combines a feedback controller of the joint angle with an adaptive input shaper updated by an algebraic non-asymptotic identification. The feedback controller is designed to guarantee trajectory tracking of the joint angle, simplifying thus the input shaper, which can be designed for the arm dynamics only. The input shaper is updated by an algebraic identification of the natural frequency corresponding to the first vibration mode of the arm. In addition, the influence of the assumptions adopted to derive the algebraic identification on the performance of the estimation is studied. Finally, the proposed adaptive control strategy is implemented in practice.  相似文献   

18.
本文研究柔性机械臂的轨迹跟踪和振动抑制问题. 首先, 利用Lagrange法和假设模态法建立柔性机械臂的动态模型, 进而利用奇异摄动理论得到柔性机械臂的双时间尺度模型. 然后, 基于慢时间尺度模型利用滑模控制理论设计轨迹跟踪控制器; 借助于快时间尺度模型利用自适应动态规划设计参数不精确已知情况下的最优振动抑制控制器; 将二者相结合, 构造双时间尺度组合控制器, 利用奇异摄动理论证明闭环系统稳定. 最后, 在Matlab/Simulink环境下进行实验, 与现有方法相比, 本文设计的控制器对柔性振动具有更好的振动抑制效果, 跟踪精度更高.  相似文献   

19.
大型挠性空间机械臂振动抑制的一种关节控制策略   总被引:3,自引:1,他引:3  
大型空间机械臂在操作过程中,一个突出的问题是超低频挠性,不仅存在机械臂的弯曲振动,而且还存在关节的扭转变形振动;另外一个不能忽视的问题就是减速器的扭矩传递特性,以及机械臂关节运动与基座扰动(空间站)之问的耦合特性,这就要求根据关节结构和传感器配置实现关节位置控制,同时稳定和衰减机械臂及其关节的低频挠性振动.本文运用集中参数法对空间机械臂的挠性动力学进行建模,设计了工程可实现的单个关节控制策略及其控制律,分析和数值仿真了其稳定性,对未来空间站的大型挠性空间机械臂设计、动力学与控制的研究具有一定的参考价值.  相似文献   

20.
Reducing structural dead weight has become of increasing importance in the design of new generation lightweight and high-speed robot manipulators. However, due to the nature of structural flexibility, the dynamic oscillation associated with robot structures can affect the operation accuracy and precision. This work, in two parts, presents a study on the vibration control of elastic or flexible robot structures. Effects of distributed passive (Part I) and active (in Part II) actuators on elastic robot structures are studied. The proposed distributed passive viscoelastic actuator (in Part I) is a layer (or layers) of viscoelastic polymer directly attached to the flexible robot element, the oscillation of which is to be controlled. The passive actuator is activated by the oscillation of the robot structure and it automatically dissipates vibration energy and constrains the undesirable motion to eliminate the disturbance and to maintain a precise robot trajectory. A finite element program capable of analyzing flexible links is developed. Results obtained from the finite element simulation are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号