首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligonucleotide microarray analysis was applied to assess the expression profile of 332 probe sets representing 308 genes or expressed sequence tags (ESTs) that map to chromosome 17 in order to address epigenetic events that result in alterations in gene expression in epithelial ovarian cancer (EOC). Expression profiles were generated from 12 primary cultures derived from normal ovarian surface epithelium (NOSE) and four long-term cultures (TOV-81D, TOV-112D, TOV-21G and OV-90) derived from EOCs that have been previously characterized and shown to mimic features of the tumoral cells from which they were derived. The expression values of all 332 probe sets is highly correlated across the 12 NOSEs (89% correlation coefficients >0.90). In two-way comparisons, differential patterns of gene expression were observed for 157 probe sets for which the expression value of at least one EOC cell line fell outside the limits of the range of expression of the 12 NOSEs. When compared to NOSEs, four genes displayed similar differential patterns of gene expression across all four EOC cell lines, and 26 genes displayed similar differential patterns of gene expression across the three EOC cell lines (TOV-112D, TOV-21G and OV-90) representing tumoral cells derived from the most aggressive disease. A total of 17 genes displayed differential patterns of gene expression greater than threefold in at least one EOC cell line in comparison to NOSE, and three genes were differentially expressed greater than threefold across all aggressive cell lines. The analysis of a selected number of genes by RT-PCR revealed patterns of gene expression comparable to those observed by microarray analysis in the majority of samples tested. Comparison of expression profiles of differentially expressed genes identified by microarray analysis in two-way comparisons of the EOC cell lines and the NOSEs with published reports revealed 10 genes previously implicated in ovarian tumorigenesis and 18 in tumorigenesis of other types of cancer. The differential pattern of gene expression of genes that map to both the p and q arm of chromosome 17 is consistent with the hypothesis that a number of genes that map to this chromosome are implicated in the etiology of ovarian cancer.  相似文献   

2.
We have previously described an ovarian cancer model based on four independent spontaneously immortalized epithelial ovarian cancer cell lines (TOV-21G, TOV-81D, TOV-112D and OV-90) from patients who were never exposed to chemotherapy or radiation therapy. These cell lines are particularly interesting since they retain characteristics of the original epithelial ovarian cancers (EOC) from which they were derived. Here we report the characterization of this model system using high-density DNA microarrays in order to assess gene expression. Expression profiles were generated from total RNAs extracted from the four EOC cell lines. For comparison, expression profiling is also provided for a primary culture of normal ovarian surface epithelium (NOV-31) and a fresh EOC sample (TOV-578G). Comparison of expression profiles revealed patterns of expression that distinguish NOV-31 from that of all tumor derived samples. The expression pattern of TOV-81D, an EOC cell line that was derived from a patient with indolent disease, most closely resembles NOV-31 while profiles of samples derived from patients with more aggressive disease (TOV-21G, OV-90, TOV-112D and TOV-578G) showed more divergent patterns of expression. The microarray analysis (http://genome.mcgill.ca) results confirm the usefulness of an ovarian cancer model based on the characterization of these EOC cell lines.  相似文献   

3.
4.
Our previous studies indicate that loss of MKK4 expression is associated with the progression of ovarian cancer. However, direct evidence that MKK4 inhibits the malignant phenotype of ovarian cancer cells is limited. In the current study, we investigated the mechanism relating loss of MKK4 expression to the development of ovarian cancer. Using cell growth and anchorage-independent assays, we determined that both the growth and colony-forming ability of MKK4-transfected TOV-21G cells, a line with a homozygous deletion of MKK4, were significantly reduced compared to control vector-transfected cells. Overexpression of the MKK4 gene in TOV-21G cells resulted in reduced proliferative activity and increased apoptosis. To confirm that MKK4 expression related to tumor suppress function, we used two independent but complementary approaches. MKK4 gene knockdown in OVK18#2 and MDAH2774 cells, which overexpressed MKK4, increased proliferation activity. Additionally, the engineered expression of MKK4 in SKOV3 cells, a line with low endogenous MKK4 expression, produced a phenotype similar to that of TOV-21G. Similar results were produced in tumor xenografts in nude mice. These results indicated that MKK4 acts as a tumor suppressor and may represent an important therapeutic target for the treatment of ovarian cancer.  相似文献   

5.
Herpesvirus saimiri (HVS) has the ability to infect a variety of human cell lines and establish a persistent infection by virtue of episomal maintenance. Moreover, the viral episome provides sustained expression of a heterologous transgene. HVS-based vectors can also persist for a long term in tumor xenografts generated from HVS-infected human carcinoma cell lines. The viral episome remains latent within the xenograft allowing long-term transgene expression. These properties, in addition to its ability to incorporate large amounts of heterologous DNA, make HVS an attractive potential gene delivery vector. Here we report on the further evaluation of such HVS-based vectors. We demonstrate for the first time that HVS can efficiently infect solid tumor xenografts derived from a variety of human carcinoma cells via direct intratumoral injections. Furthermore, HVS can efficiently infect spheroid cultures, a three-dimensional cell culture system that closely resembles a tumor. Upon infection of both the tumor xenografts and spheroid cultures, HVS-based vectors can establish a persistent episomal infection within the tumor xenograft allowing expression of a heterologous transgene. These results suggest that HVS-based vectors may be suitable for cancer gene therapy applications.  相似文献   

6.
The purpose of this study was to investigate the in vitro effect of anti-MUC1 monoclonal antibody (MAb) C595 alone and in combination with docetaxel, on the growth and survival of different epithelial ovarian cancer (EOC) cell lines. MUC1 expression was assessed on EOC cell lines (OVCAR-3, IGROV-1, A2780, CAOV-3, TOV-21G, TOV-112D, SKOV-3 and OV-90) using immunofluorescence labeling and flow cytometry. The effect of MAb C595 alone or in combination with docetaxel on the cell lines was studied by proliferation, colony and TUNEL assays. Our results indicate that all primary and metastatic EOC cell lines tested were positive to MAb C595 (MUC1); MAb C595 inhibited EOC cell proliferation in a MUC1- and dose-dependent manner; low-dose MAb C595 (1/2 of IC50) combined with docetaxel greatly improved efficiency of cell killing in EOC cells and induced apoptosis; the additive effect of MAb C595 was further confirmed in colony forming assays; and cell death following single or combined treatments was associated with the release of cytochrome c and increased caspase-3 activity. These results suggest that MAb C595 used either alone, or combined with docetaxel, is an attractive strategy for targeting human EOC.  相似文献   

7.
Almost all known conventional cytotoxic anticancer drugs are less effective in killing tumor cells grown as multicellular spheroids than in killing tumor cells grown as monolayer cell cultures. This "multicellular resistance" reflects the relative intrinsic drug-resistant phenotype of most solid tumors growing in vivo and is due to factors such as limited drug penetration or reduced fractions of proliferating cells. Proteasome inhibitors such as PS-341, a dipeptide boronic acid analogue, represent an interesting new class of potential anticancer drugs, which are entering early-phase clinical trials. PS-341 has been found to have good broad-spectrum cytotoxic activity in the 60-monolayer cell line National Cancer Institute screen. However, because its relative potency has not been tested in spheroid systems, we analyzed the activity of PS-341 in a spheroid/solid tumor context using four different human ovarian carcinoma cell lines and three prostate carcinoma cell lines, respectively. We found, with one exception, that PS-341 showed equal or greater activity in spheroids than in the respective monolayer cell cultures, even in a prostate cancer spheroid model with a very low growth fraction. PS-341 induced apoptotic cell death in carcinoma cells in both culture systems. We also noted a decrease in XIAP protein, a member of the inhibitor of apoptosis (IAP) family of apoptosis inhibitors, and phosphorylation of Bcl-XL in PS-341-treated ovarian carcinoma cells. Furthermore, DNA fragmentation, a hallmark of apoptosis (in this case, induced by PS-341), was completely inhibited by the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD). Taken together, the results indicate that unlike most other known anticancer cytotoxic drugs, PS-341 appears to be as effective in killing tumor cells grown in the form of multicell spheroids as in killing tumor cells grown in monolayer cell culture. Hence, this compound has the potential to circumvent multicellular drug resistance and, as such, may show promising activity against solid tumors with low growth fractions in vivo, which are frequently intrinsically resistant to conventional cytotoxic anticancer drugs.  相似文献   

8.
Ovarian cancer cells can form spheroids under serum‐free suspension culture conditions. The spheroids, which are enriched in cancer stem cells, can result in tumor dissemination and relapse. To identify new targetable molecules in ovarian cancer spheroids, we investigated the differential expression of genes in spheroids compared with that under monolayer culture conditions by qPCR microarray. We identified that SOX2 is overexpressed in spheroids. We then proved that SOX2 expression was increased in successive spheroid generations. Besides, knockdown of SOX2 expression in SKOV3 or HO8910 ovarian cancer spheroid cells decreased spheroid formation, cell proliferation, cell migration, resistance to Cisplatin treatment, tumorigenicity, and the expression of stemness‐related genes and epithelial to mesenchymal transition‐related genes, whereas overexpression of SOX2 in SKOV3 or HO8910 ovarian cancer cells showed the opposite effects. In addition, we found that SOX2 expression was closely associated with chemo‐resistance and poor prognosis in EOC patients. These results strongly suggest that SOX2 is required to maintain cancer stem cells in ovarian cancer. Targeting SOX2 in ovarian cancer may be therapeutically beneficial.  相似文献   

9.
10.
11.
Ganoderma lucidum is a herbal mushroom known to have many health benefits, including the inhibition of tumor cell growth. However, the effect of Ganoderma lucidum on epithelial ovarian cancer (EOC), the most fatal gynecological malignancy, has not yet been reported. In this study, we determined whether Ganoderma lucidum regulates EOC cell activity. Using several cell lines derived from EOC, we found that Ganoderma lucidum strongly decreased cell numbers in a dose-dependent manner. Ganoderma lucidum also inhibited colony formation, cell migration and spheroid formation. In particular, Ganoderma lucidum was effective in inhibiting cell growth in both chemosensitive and chemoresistant cells and the treatment with Ganoderma lucidum significantly enhanced the effect of cisplatin on EOC cells. Furthermore, Ganoderma lucidum induced cell cycle arrest at the G2/M phase and also induced apoptosis by activating caspase 3. Finally, Ganoderma lucidum increased p53 but inhibited Akt expression. Taken together, these findings suggest that Ganoderma lucidum exerts multiple anti-tumor effects on ovarian cancer cells and can enhance the sensitivity of EOC cells to cisplatin.  相似文献   

12.
目的:探讨卵巢上皮癌细胞相关基因的差异表达。方法:采用舍384条肿瘤相关基因的cDNA阵谱检测了卵巢上皮癌细胞株SKOV-3及正常卵巢上皮细胞的基因谱,分析卵巢上皮癌细胞相关基因的差异表达。结果:在384条候选基因中,与卵巢癌相关的差异表达基因33条,其中22条表达上调,11条表达下调。结论:cDNA阵谱技术是筛查卵巢癌相关基因的有效方法。  相似文献   

13.
Detachment of cancer cells from the primary tumor and formation of spheroids in ascites is required for implantation metastasis in epithelial ovarian cancer (EOC), but the underlying mechanism of this process has not been thoroughly elucidated. To mimic this process, ovarian cancer cells were grown in 3D and 2D culture. Hey and OVCA433 spheroids exhibited decreased cell proliferation and enhanced adhesion and invasion. SMYD3 expression was elevated in ovarian carcinoma spheroids in association with increased H3K4 methylation. Depletion of SMYD3 by transient siRNA, stable shRNA knockdown and the SMYD3 inhibitor BCI-121 all decreased spheroid invasion and adhesion. Gene expression arrays revealed downregulation of integrin family members. Inhibition assays confirmed that invasion and adhesion of spheroids are mediated by ITGB6 and ITGAM. SMYD3-deficient cells regained the ability to invade and adhere after forced overexpression of SMYD3, ITGB6 and ITGAM. However, this biological ability was not restored by forced overexpression of SMYD3 in ITGB6- and/or ITGAM-deficient cancer cells. SMYD3 and H3K4me3 binding at the ITGB6 and ITGAM promoters was increased in spheroids compared to that in monolayer cells, and the binding was decreased when SMYD3 expression was inhibited, consistent with the expression changes in integrins. SMYD3 expression and integrin-mediated adhesion were also activated in an intraperitoneal xenograft model and in EOC patient spheroids. In vivo, SMYD3 knockdown inhibited tumor metastasis and reduced ascites volume in both the intraperitoneal xenograft model and a PDX model. Overall, our results suggest that the SMYD3-H3K4me3-integrin pathway plays a crucial role in ovarian cancer metastasis to the peritoneal surface.  相似文献   

14.
Previous studies have implicated the chromosomal region at 17q25 as harboring tumor suppressor genes based on the frequent loss of heterozygosity (LOH) observed in epithelial ovarian cancers (EOC). RT-PCR validation of Affymetrix GeneChip expression of H3F3B, a member of the 3B histone family that maps to 17q25.1, revealed a doublet band in cDNA from one of four EOC cell lines, OV90. In contrast to three other EOC cell lines (TOV81D, TOV112D and TOV21G) and primary cultures derived from normal ovarian surface epithelial cells (NOSE), sequence analysis of the cDNA revealed a deletion of G at position 1484 of the transcribed sequence which is located within the 3'UTR of H3F3B. OV90 was derived from ascites fluid of an undifferentiated adenocarcinoma of ovarian origin. The variant allele was identified in 1 of 65 (2%) healthy women with no prior history of cancer and in 5 participants with ovarian tumors comprising of 4 of 79 (5%) malignant EOC, none of 10 low malignancy potential tumors, and 1 of 8 (13%) benign tumors. All carriers of the variant alleles were heterozygous and tumor samples did not exhibit preferential LOH of the normal allele. The variant allele was identified in EOC samples of clear cell (1 of 20), mucinous (1 of 8), mixed cell (1 of 3) and undifferentiated (1 of 2) histopathological subtypes but none of 34 serous or 12 endometrioid subtype tumors. One of 3 mucinous benign tumors also harbored the variant allele. The functional significance of the variant is unknown, however its presence in rare subtypes of ovarian epithelial tumors warrants further investigation.  相似文献   

15.
Metabolic programming of cancer cells is an essential step in transformation and tumor growth. We established two‐dimensional (2D) monolayer and three‐dimensional (3D) cultures, the latter called a “tissueoid cell culture system”, using four types of tongue cancer cell lines. We also undertook a comprehensive metabolome analysis of three groups that included xenografts created by transplanting the cell lines into nude mice. In addition, we undertook a functional analysis of the mitochondria, which plays a key role in cancer metabolism. Principal component analysis revealed the plots of the four cell lines to be much narrower in 2D culture than in 3D culture and xenograft groups. Moreover, compared to xenografts, the 2D culture had significantly lower levels of most metabolites. These results suggest that the unique characteristics of each cell disappeared in 2D culture, and a type of metabolism unique to monolayer culture took over. Conversely, ATP production, biomass synthesis, and maintenance of redox balance were shown in 3D culture using sufficient nutrients, which closely resembled the metabolic activity in the xenografts. However, there were several differences between the metabolic activity in the 3D culture and xenografts. In vivo, the cancer tissue had blood flow with stromal cells present around the cancer cells. In the xenografts, we detected metabolized and degraded products in the liver and other organs of the host mice. Furthermore, the 3D system did not show impairment of mitochondrial function in the cancer cells, suggesting that cancer cells produce energy simultaneously through mitochondria, as well as aerobic glycolysis.  相似文献   

16.
Various in vitro and in vivo experimental models have been used for the discovery of genes and pathways involved in melanoma and other types of cancer. However, in many cases, the results from various tumor models failed to be validated successfully in clinical studies. Limited information is available on how closely these models reflect the in vivo physiological conditions. In this study, a comprehensive genomics approach was used to systematically compare the expression patterns of snap frozen samples obtained from patients with primary melanoma, lymph node metastasis, and distant metastases, and compare these patterns to those of their corresponding cell lines and tumor xenografts in nude mice. The GE Healthcare 20k human genome array was used and the expression data was normalized and analyzed using GeneSpring 7.2 software. Based on the expression analysis, the correlation rate between the snap frozen primary patient samples vs. derived cell lines was 66%, with 1687 differentially expressed genes. The correlation rate between the snap frozen primary patient samples and the tumor xenografts was 75%, with 1,374 differentially expressed genes, and the correlation rate comparing tumor xenografts to derived cell lines ranged between 58% and 84%. These results demonstrated significant gene expression differences between tumor materials with different in vitro and in vivo growth microenvironments. Such studies can help us to distinguish between genes up- or down-regulated as a result of the microenvironment and those stably expressed independently of the tumor milieu. With the extensive use of cell lines and xenografts in cancer research, the information obtained using our approach may help to better interpret results generated from different tumor models by understanding common differences, as well as similarities at the gene expression level, information that may have important practical and biological implications.  相似文献   

17.
微囊化肿瘤细胞生长及其基因表达的研究   总被引:2,自引:0,他引:2  
目的:以人乳腺癌细胞系(MCF-7)为模型,探讨肿瘤细胞在微囊化环境中的生长特性和对基因表达的影响。方法:使用大功率高压脉冲微胶囊制备仪制备微囊化MCF-7细胞,观察细胞的生长和代谢特性;待微囊内的细胞体外生长成团后固定、石蜡包埋、制作连续切片,HE染色并免疫组化检测HIF-1、cyclin D1、VEGF、p53、PCNA、BrdU等相关基因的表达。以平面培养细胞做对照。结果:人乳腺癌细胞微囊化后可继续生长增殖并聚集成团,同时消耗葡萄糖产生乳酸。微囊化肿瘤细胞表现出较强的增殖活性;当微囊内的细胞团增大到一定程度时中心可出现坏死区,但分布于团块外层的细胞仍具有增殖活性;HIF-1和cyclin D1主要在位于细胞团内部的细胞表达;VEGF的表达与细胞所处位置无关;未检测到p53的阳性表达。平面培养MCF-7细胞可检测到PCNA和VEGF的表达。结论:微囊化肿瘤细胞呈三维立体方式生长并存在相关基因的表达,是一种介于体外单层培养和体内移植瘤试验之间的新型肿瘤细胞特性研究、抗肿瘤药物筛选的模型,具有简单、方便和经济等特点。  相似文献   

18.
Alterations of the tumor suppressor gene ARLTS1 in ovarian cancer   总被引:2,自引:0,他引:2  
ARLTS1 is a tumor suppressor gene initially described as a low-penetrance cancer gene: a truncated Trp149Stop (MUT) polymorphism is associated with general familial cancer aggregation and, particularly, high-risk familial breast cancer. DNA hypermethylation has been identified as a mechanism of ARLTS1 expression down-regulation in lung carcinomas and B-cell chronic lymphocytic leukemia. We found that, in the majority of ovarian carcinomas (61.5%) and in a significant proportion of ovarian and breast cancer cell lines (45%), ARLTS1 is strongly down-regulated due to DNA methylation in its promoter region. After ARLTS1 restoration by adenoviral transduction, only the negative TOV-112 and the homozygously mutated (MUT) MCF7 cells, but not the OV-90 cells expressing a normal ARLTS1 product, underwent apoptosis and inhibition of cell growth. Furthermore, ARLTS1 reexpression significantly reduced the tumorigenic potential of TOV-112 in nude mice. On the contrary, the ARLTS1-MUT induced significantly lower levels of apoptosis in infected cells and reduced in vivo tumorigenesis only partially, supporting the hypothesis that Trp149Stop polymorphism is retained in the general population and predisposes to cancer because of a reduction, but not full loss, of normal ARLTS1 function.  相似文献   

19.
Cyclooxygenase‐2 (COX‐2) expression contributes to tumor growth and invasion in epithelial ovarian cancer (EOC). COX‐2 inhibitors exhibit important anticarcinogenic potential against EOC, but the molecular mechanisms underlying this effect and relation with PI3‐kinase/AKT signaling remain the subject of intense investigations. Therefore, the role of COX‐2 in EOC and its cross talk with PI3‐kinase/AKT pathway were investigated using a large series of EOC tissues in a tissue micro array (TMA) format followed by in vitro and in vivo studies using EOC cell lines and NUDE mice. Clinically, COX‐2 was overexpressed in 60.3% of EOC and was significantly associated with activated AKT (p < 0.0001). Cox‐1 expression was seen in 59.9% but did not associate with AKT. Our in vitro data using EOC cell line showed that inhibition of COX‐2 by aspirin, selective inhibitor NS398 and gene silencing by COX‐2 specific siRNA impaired phosphorylation of AKT resulting decreased downstream signaling leading to cell growth inhibition and induction of apoptosis. Finally, treatment of MDAH2774 cell line xenografts with aspirin resulted in growth inhibition of tumors in NUDE mice via down‐regulation of COX‐2 and AKT activity. These data identify COX‐2 as a potential biomarker and therapeutic target in distinct molecular subtypes of ovarian cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号