首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu L  Tan LS  Hong MH 《Applied optics》2011,50(31):G74-G79
A novel hybrid approach to fabricate large-area well-ordered Ag/Au bimetallic nanodot arrays and its potential applications for biosensing is investigated. With the combination of laser interference lithography and the thermal annealing technique, Ag/Au bimetallic nanodots about ~50 nm are formed inside periodic nanodisk arrays at a dimension of ~530 nm on quartz substrates. Extinction spectra of the fabricated nanostructures show their localized surface plasmon resonance (LSPR) can be well controlled by Au concentration, which offers a means to flexibly tune the optical properties of the nanodot arrays. To study the sensitivity of the nanodot arrays, resonance wavelength changes per refractive index unit (RIU) are performed in different surrounding environments. This shows a 94% increase in peak shift per refractive index unit (nanometers/RIU) compared to the nanodot arrays formed only by thermal annealing. These results demonstrate a feasible approach to improve LSPR-based biosensor performance.  相似文献   

2.
An experimental investigation on an S-tapered photonic crystal fiber interferometer is presented in this paper. The sensor exhibits highly surrounding refractive index sensitive, which is 4.7 × 10?3 RIU (refractive index unit) in 1.33–1.39 and 1.45 × 10?3 RIU in 1.39–1.44 commensurable with general sensors. Attribute to the S-shape’s distortion, red shifts are measured in axial strain test. In addition, insensitivity (4.3 pm/°C) in low temperature and sensitivity (22.4 pm/°C) in high temperature are confirmed by experiments. These properties combined with a simple fabrication process and a durable structure.  相似文献   

3.
A novel optical bean-shaped resonator (BR) biosensor integrated with Mach–Zehnder Interferometer structure based on a silicon-on-isolator platform has been proposed and investigated theoretically and numerically. By characterizing and optimizing the structure, our bean-shaped device exhibits a high extinction ratio over 50?dB and a high Q factor of about 5.46?×?104 in a wide wavelength span. The quasi-free spectral range (FSR) is about 469?nm. The sensitivity of 688.6?nm/refractive index unit (RIU) is achieved for bulk changes of refractive index and the detection range varies from 10?6 to 0.689 RIU. More complex bean-shaped structures can also be cascaded by adding more bending waveguides in BR to obtain wider quasi-FSR range.  相似文献   

4.
We propose a plasmonic nanosensor based on an open box-like metal nanocavity. Surface plasmon polaritons (SPPs) excited at the metal/dielectric interface oscillate in the cavity, and then, plasmonic resonance modes are formed. Since the cavity is open, a part of the resonance light of the SPPs is scattered to light. By monitoring the shift in the scattering spectrum, the refractive index change of the sensed material can be derived. Because of the high reflectivity of the metallic walls, the sensitivity and figure of merit (FOM) are higher than those using single nanoparticle or nanoantenna. A sensitivity of 1046 nm/RIU (RIU denotes refractive index unit) and a FOM of 23.4 are derived for a 700 nm long and 350 nm high square cavity. Furthermore, the sensing area of the proposed sensor is smaller than 1 μm2 and the performance of the nanosensor can be further tuned by varying the cavity dimensions. The proposed sensor is well suited for observing small changes in biological and chemical reactions.  相似文献   

5.
Metasurface serves as a promising plasmonic sensing platform for engineering the enhanced light–matter interactions. Here, a hyperbolic metasurface with the nanogroove structure in the subwavelength scale is designed. This metasurface is able to modify the wavefront and wavelength of surface plasmon wave with the variation of the nanogroove width or periodicity. At the specific optical frequency, surface plasmon polaritons are tightly confined and propagated with a diffraction‐free feature due to the epsilon‐near‐zero effect. Most importantly, the groove hyperbolic metasurface can enhance the plasmonic sensing with an ultrahigh phase sensitivity of 30 373 deg RIU?1 and Goos–Hänchen shift sensitivity of 10.134 mm RIU?1. The detection resolution for refractive index change of glycerol solution is achieved as 10?8 RIU based on the phase measurement. The detection limit of bovine serum albumin (BSA) molecule is measured as low as 0.1 × 10?18m (1 × 10?19 mol L?1), which corresponds to a submolecular detection level (0.13 BSA mm?2). As for low‐weight biotin molecule, the detection limit is estimated below 1 × 10?15m (1 × 10?15 mol L?1, 1300 biotin mm?2). This enhanced plasmonic sensing performance is two orders of magnitude higher than those with current state‐of‐art plasmonic metamaterials and metasurfaces.  相似文献   

6.
In view of the toxic potential of a bioweapon threat, rapid visual recognition and sensing of ricin has been of considerable interest while remaining a challenging task up to date. In this study, a gold nanopin‐based colorimetric sensor is developed realizing a multicolor variation for ricin qualitative recognition and analysis. It is revealed that such plasmonic metasurfaces based on nanopin‐cavity resonator exhibit reflective color appearance, due to the excitation of standing‐wave resonances of narrow bandwidth in visible region. This clear color variation is a consequence of the reflective color mixing defined by different resonant wavelengths. In addition, the colored metasurfaces appear sharp color difference in a narrow refractive index range, which makes them especially well‐suited for sensing applications. Therefore, this antibody‐functionalized nanopin‐cavity biosensor features high sensitivity and fast response, allowing for visual quantitative ricin detection within the range of 10–120 ng mL?1 (0.15 × 10?9–1.8 × 10?9 m ), a limit of detection of 10 ng mL?1, and the typical measurement time of less than 10 min. The on‐chip integration of such nanopin metasurfaces to portable colorimetric microfluidic device may be envisaged for the quantitative studies of a variety of biochemical molecules.  相似文献   

7.
We describe a plasmonic crystal device possessing utility for optically transducing chemical forces. The device couples complex plasmonic fields to chemical changes via a chemoresponsive, surface-bound hydrogel. We find that this architecture significantly enhances the spectroscopic responses seen at visible wavelengths while enabling capacities for sensitive signal transduction, even in cases that involve essentially no change in refractive index, thus allowing analytical detection via colorimetric assays in both imaging and spectroscopic modes.  相似文献   

8.
建立了一种基于长程表面等离子体共振技术检测大肠杆菌浓度的方法及系统。基于此,制备了能够产生长程表面等离子体共振效应的双层膜传感芯片,并在实验上将长程表面等离子体共振(LSPR)和传统表面等离子体共振(CSPR)两种生物传感器的性能进行了对比。结果表明LSPR生物传感器共振曲线的平均半高宽比CSPR传感器共振曲线的平均半高宽窄1.79倍,且其灵敏度是CSPR的2倍。由此,证实了基于LSPR的生物传感器对大肠杆菌浓度的改变更加敏感。此外,该方法分辨率高,试剂用量少,有效克服分界面所带来的影响,并能够对大肠杆菌进行实时检测。  相似文献   

9.
Abstract

In this paper, we describe a two-dimensional photonic crystal-based biosensor that consists of a waveguide and a nanocavity with high sensitivity. A new method is employed for increasing sensitivity of the biosensor. The simulation results show that biosensor is highly sensitive to the refractive index (RI) variations due to injected biomaterials, like glycated haemoglobin, into the sensing surface. The proposed biosensor is designed for the wavelength range of 1514.4–1896.3 nm. The sensitivity and the quality factor are calculated to be 3000 and 272.43 nm/RIU, respectively. The designed structure can detect a 0.002 change in the RI via resonant wavelength shift of 0.9 nm. The band diagram and transmission spectra are computed using plane wave expansion and finite difference time domain methods.  相似文献   

10.
Au double nanopillars with nanogap for plasmonic sensor   总被引:1,自引:0,他引:1  
We propose a simple, precise, and wafer-scale fabrication technique for Au double nanopillar (DNP) arrays with nanogaps of several tens of nanometers. An Au DNP was simply constructed by alternately laminating thin layers of Au and polymer on a template and selectively removing the thin layers. This DNP array was expected to exhibit a specific plasmonic property induced by its narrow gap. When measuring the refractive index sensitivity (RIS), Au DNP arrays with 33 nm gaps exhibited a high RIS of 1075 nm RIU(-1) and showed a higher sensor figure of merit than the alternative structures, which did not have a nanogap structure but had almost the same surface area. This indicated that the enhanced plasmon electromagnetic field induced by the nanogap structure improved sensor performance. Our fabrication technique and the optical properties of the nanogap structure will provide useful information for developing new plasmonic applications with nanogap structures.  相似文献   

11.
We present a non-planar all-metal plasmonic perfect absorber (PA) with response polarization independent in infrared region, which can be served as a sensor for enhanced refractive index sensing. Distinct from previous designs, the proposed PA consisted of all metal structured film constructed with an assembly of four-tined rod resonators (FRRs). The PA with a high quality-factor (Q-factor) of 41.2 and an absorbance of 99.9% at 142.6 THz has been demonstrated numerically. The resonance behavior occurs in the space between the rods of the FRRs, which is remarkable different conventional sandwiched structural PAs. Based on equivalent LC circuit theory, the absorption peak can be finely tuned by varying the geometrical dimensions of the FRRs. Furthermore, the resonance frequency shows highly sensitive response to the change of refractive index in the surrounding medium. A careful design for refractive index sensor can yield a sensitivity of 1445 nm/refractive index unit (RIU) and a figure of merit (FOM) of 28.8. The demonstrated design of the plasmonic PA for sensing provides great potential application in enhancing refractive index sensors and the enhanced infrared spectroscopy.  相似文献   

12.
The processes of surface plasmon resonance excitation in a bent single-mode optical fiber with a metallized cladding have been studied experimentally. It is shown that, for a certain combination of the bending radius of an optical fiber and the thickness of a metal film, a strong coupling between the fundamental and plasmon–polariton mode is achieved through a whispering gallery mode supported by the fiber cladding, which leads to the formation of a resonance dip with a depth of ~30 dB or more in the transmission spectrum of an optical fiber loop. The position of the dip depends strongly on the ambient refractive index, which provides the possibility of refractometric measurements with a spectral sensitivity of ~5 μm/RIU and a resolution of ~4 × 10–6. Limits of measurement of the refractive index are determined by the operating spectral range and the bending radius of the optical fiber and are 1.42–1.44 for the setup used.  相似文献   

13.
In this paper, Au@Ag nanopencil is designed as a multimodality plasmonic nanoprobe based on asymmetric etching for the detection of SCN and ClO. Au@Ag nanopencil with Au tip and Au@Ag rod is prepared by asymmetric tailoring of uniformly grown silver-covered gold nanopyramids under the combined effect of partial galvanic replacement and redox reaction. By asymmetric etching in different systems, Au@Ag nanopencil exhibits diversified changes in the plasmonic absorption band: O2•− facilitated by SCN etches Au@Ag rod from the end to the tip, causing a blue shift of the localized surface plasmon resonance (LSPR) peak as the aspect ratio decreases; while the ClO can retain Au@Ag shell and etch Ag within rod from the tip to the end, causing a redshift of the LSPR peak as the coupling resonance weakens. Based on peak shifts in different directions, a multimodality detection of SCN and ClO has been established. The results demonstrate the detection limits of SCN and ClO are 160 and 6.7 nm , and the linear ranges are 1–600 µm and 0.05–13 µm , respectively. The finely designed Au@Ag nanopencil not only broadens the horizon of designing heterogeneous structures, but also enriches the strategy of constructing multimodality sensing platform.  相似文献   

14.
Advances in the understanding and fabrication of plasmonic nanostructures have led to a plethora of unprecedented optoelectronic and optochemical applications. Plasmon resonance has found widespread use in efficient optical transducers of refractive index changes in liquids. However, it has proven challenging to translate these achievements to the selective detection of gases, which typically adsorb non‐specifically and induce refractive index changes below the detection limit. Here, it's shown that integration of tailored fractals of dielectric TiO2 nanoparticles on a plasmonic metasurface strongly enhances the interaction between the plasmonic field and volatile organic molecules and provides a means for their selective detection. Notably, this superior optical response is due to the enhancement of the interaction between the dielectric fractals and the plasmonic metasurface for thickness of up to 1.8 μm, much higher than the evanescent plasmonic near‐field (≈30 nm) . Optimal dielectric–plasmonic structures allow measurements of changes in the refractive index of the gas mixture down to <8 × 10?6 at room temperature and selective identification of three exemplary volatile organic compounds. These findings provide a basis for the development of a novel family of dielectric–plasmonic materials with application extending from light harvesting and photocatalysts to contactless sensors for noninvasive medical diagnostics.  相似文献   

15.
The plasmonic properties of single silver triangular nanoprisms are investigated using dark-field optical microscopy and spectroscopy. Two distinct localized surface plasmon resonances (LSPR) are observed. These are assigned as in-plane dipolar and quadrupolar plasmon excitations using electrodynamic modeling based on the discrete dipole approximation (DDA). The dipole resonance is found to be very intense, and its peak wavelength is extremely sensitive to the height, edge length, and tip sharpness of the triangular nanoprism. In contrast, the intensity of the quadrupole resonance is much weaker relative to the dipole resonance in the single particle spectra than in the ensemble averaged spectrum. Several parameters relevant to the chemical sensing properties of these nanoprisms have been measured. The dependence of the dipole plasmon resonance on the refractive index of the external medium is found to be as high as 205 nm RIU(-1) and the plasmon line width as narrow as approximately 0.17 eV. These data lead to a sensing figure of merit (FOM), the slope of refractive index sensitivity in eV RIU(-1)/line width (eV), as high as 3.3. In addition, the LSPR shift response to alkanethiol chain length was found to be linear with a slope of 4.4 nm per CH2 unit. This is the highest short-range refractive index sensitivity yet measured for a nanoparticle.  相似文献   

16.
A facile and economical route to preparation of highly ordered sliver pore or particle arrays with controlled pore‐shape and size extended over cm2 areas is described. The substrates are prepared at planar and curved surfaces via sphere‐imprinted polymer (PDMS) templating using polystyrene spheres with diameters of 820, 600, or 430 nm. Nano‐pore arrays are created by sputtering 80 nm of Ag directly onto the templates and nano‐particle arrays are prepared by electrode‐less deposition of Ag from Tollen's reagent. The shape of the nano‐pore or particles in the array conformed to that of the imprint of the sphere on the template. Stretching the flexible template enable creation of cuboid shaped nano‐voids and nano‐particles following Ag deposition. Diffuse reflectance from the spherical Ag nano‐cavity arrays showed absorbance maxima at wavelengths comparable similar to the diameter of the templating sphere, whereas reflectance from the cuboid arrays, showed little correlation with the sphere diameter. The cuboid nano‐particle arrays showed the most intense visible absorption which is red‐shifted compared to the spherical arrays. White light diffraction from the arrays, observed by rotating 1 cm2 substrates relative to a fixed light source, reflected exactly the symmetry axes of the periodic nano‐features in the arrays demonstrating the remarkable macroscopic order of the periodic structures. Raman spectra of 1‐benzenethiol adsorbed at the arrays indicated SERS enhancements from the substrates are attributed mainly to surface nano‐roughness with only moderate contributions from the periodically corrugated structures. Despite excitation at the major resonance dip in the reflectance spectrum, a weak, localized rim dipole mode is found to elicit a small increase in the SERS enhancement factor for the 430 nm diameter spherical arrays. FDTD studies of nano‐void arrays provided insights into v arious factors affecting the SERS experiment and confirmed the array's plasmonic spectra are dominated by propagating plasmon modes under microscope excitation/collection angles.  相似文献   

17.
Microsphere-based biosensors have been attracting the attention of the photonics community due to their high sensitivity, selectivity and implementation. Microspheres, with their high quality-factor (Q-factor) morphology dependent resonances, are very sensitive to refractive index and size changes. The perturbation of the microsphere morphology dependent resonances can be used for the detection of biomolecules. Adsorption of different biomolecules on the surface of microspheres causes a change of effective size and refractive index leading to the shift of resonance wavelengths. A biosensor, based on this phenomenon, can detect a single molecule sensitively depending on the configuration that needs to be designed and optimised. Silica with a refractive index of 1.5, which is very close to that of bimolecular agents, is a suitable photonic material to use for biosensing applications. The transverse electric and transverse magnetic elastic scattering spectra at 90 degrees and 0 degrees are calculated at 1.55 microm with the associated shifts after adding a layer on it. 90 degrees scattering is used to monitor the scattered signal, whereas 0 degrees scattering is used to monitor the transmission signal.  相似文献   

18.
Tunable structural color generation from vertical silicon nanowires arranged in different square lattices is demonstrated. The generated colors are adjustable using well‐defined Bragg diffraction theory, and only depend on the lattice spacing and angles of incidence. Vivid colors spanning from bright red to blue are easily achieved. In keeping with this, a single square lattice of silicon nanowires is also able to produce different colors spanning the entire visible range. It is also shown that the 2D gratings also have a third grating direction when rotated 45 degrees. These simple and elegant solutions to color generation from silicon are used to demonstrate a cost‐effective refractive index sensor. The sensor works by measuring color changes resulting from changes in the refractive index of the medium surrounding the nanowires using a trichromatic RGB decomposition. Moreover, the sensor produces linear responses in the trichromatic decomposition values versus the surrounding medium index. An index resolution of 10?4 is achieved by performing basic image processing on the collected images, without the need for a laser or a spectrometer. Spectral analysis enables an increase in the index resolution of the sensor to a value of 10?6, with a sensitivity of 400 nm/RIU.  相似文献   

19.
The practical utilization of plasmon-based technology relies on the ability to find high-performance plasmonic materials other than noble metals. A key scientific challenge is to significantly increase the intrinsically low concentration of free carriers in metal-oxide materials. Here, a novel electron–proton co-doping strategy is developed to achieve uniform hydrogen doping in metal-oxide MoO3 at mild conditions, which creates a metal-like ultrahigh free-carrier concentration approaching that of noble metals (1021 cm−3 in H1.68MoO3 versus 1022 cm−3 in Au/Ag). This bestows giant and tunable plasmonic resonances in the visible region to this originally semiconductive material. Using ultrafast spectroscopy characterizations and first-principle simulations, the formation of a quasi-metallic energy band structure that leads to long-lived and strong plasmonic field is revealed. As verified by the surface-enhanced Raman spectra (SERS) of rhodamine 6G molecules on HxMoO3, the SERS enhancement factor reaches as high as 1.1 × 107 with a detection limit at concentration as low as 1 × 10−9 mol L−1, representing the best among the hitherto reported non-metal systems. The findings not only provide a set of metal-like semiconductor materials with merits of low cost, tunable electronic structure, and plasmonic resonance, but also a general strategy to induce tunable ultrahigh free-carrier concentration in non-metal systems.  相似文献   

20.
A highly sensitive refractive index sensor based on an integrated hybrid plasmonic waveguide (HPWG) and a Metal–Insulator–Metal (M–I–M) micro-ring resonator is presented. In our design, there are two slot-waveguide-based micro-rings that encircle a gold disc. The outer slot WG is formed by the combination of Silicon–Air–Gold ring and the inner slot-waveguide is formed by Gold ring–Air–Gold disc. The slot-waveguide rings provide an interaction length sufficient to accumulate a detectable wavelength shift. The transmission spectrum and electric field distribution of this sensor structure are simulated using Finite Element Method (FEM). The sensitivity of this micro-ring resonator is achieved at 800 nm/RIU which is about six times higher than that of the conventional Si ring with the same geometry. Our proposed sensor design has a potential to find further applications in biomedical science and nano-photonic circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号