首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
针对现有结构化剪枝方法过度依赖预训练模型和直接丢弃不重要卷积核的信息造成了明显的性能下降的问题,提出一种基于信息融合策略的卷积神经网络剪枝方法(APBM),以较小精度损失降低模型复杂度、实现模型加速。首先APBM方法引入信息熵概念以表示卷积核的相似度分布,并使用分布之间的相对熵动态衡量卷积核的重要程度;同时在训练的前向传播中采用信息融合策略:融合非重要卷积核信息与重要卷积核信息,以减少剪枝过程中的信息损失和提高剪枝的容错性。在CIFAR10和CIFAR100数据集上进行验证和对比实验。实验结果表明:相对于HRank、Polarization、SWP等剪枝算法,APBM方法训练时间更少、模型压缩率更高,精度保持最佳。在基于CIFAR10的剪枝任务中,对VGG16和ResNet56分别剪掉92.74%和48.84%的参数量;在基于CIFAR100的剪枝任务中,对VGG16和ResNet56分别剪掉72.91%和44.18%的参数量。  相似文献   

2.
针对等比例剪枝导致的重要卷积层剪枝过度、残留大量冗余参数以及精度损失较大的问题,在FPGM剪枝策略基础上融入灵敏度分析进行网络剪枝。算法采用精度反馈来分析每一层卷积层的重要性,控制单层剪枝比例分析每一层不同剪枝比例对精度损失的影响,获取各个卷积层的灵敏度;结合FPGM策略分析卷积层内卷积核的重要程度按灵敏度的剪枝比例剪掉不重要的卷积核,达到对神经网络进行有效剪枝的目的。实验结果表明,所提方法在MobileNet-v1和ResNet50上剪枝率为50%的情况下,精确度仅下降1.56%和0.11%;所提方法在精度损失一致下,ResNet50上具有更高剪枝率和更低计算量。  相似文献   

3.
巩凯强  张春梅  曾光华 《计算机应用》2020,40(11):3146-3151
针对卷积神经网络(CNN)拥有巨大的参数量及计算量,限制了其在嵌入式系统等资源受限设备上应用的问题,提出了基于统计量的网络剪枝结合张量分解的神经网络压缩方法,其核心思想是以均值和方差作为评判权值贡献度的依据。首先,以Lenet5为剪枝模型,网络各卷积层的均值和方差分布以聚类方式分离出提取特征较弱的滤波器,而使用保留的滤波器重构下一层卷积层;然后,将剪枝方法结合张量分解对更快的区域卷积神经网络(Faster RCNN)进行压缩,低维卷积层采取剪枝方法,而高维卷积层被分解为三个级联卷积层;最后,将压缩后的模型进行微调,使其在训练集上重新达到收敛状态。在PASCAL VOC测试集上的实验结果表明,所提方法降低了Faster RCNN模型54%的存储空间而精确率仅下降了0.58%,同时在树莓派4B系统上达到1.4倍的前向计算加速,有助于深度CNN模型在资源受限的嵌入式设备上的部署。  相似文献   

4.
巩凯强  张春梅  曾光华 《计算机应用》2005,40(11):3146-3151
针对卷积神经网络(CNN)拥有巨大的参数量及计算量,限制了其在嵌入式系统等资源受限设备上应用的问题,提出了基于统计量的网络剪枝结合张量分解的神经网络压缩方法,其核心思想是以均值和方差作为评判权值贡献度的依据。首先,以Lenet5为剪枝模型,网络各卷积层的均值和方差分布以聚类方式分离出提取特征较弱的滤波器,而使用保留的滤波器重构下一层卷积层;然后,将剪枝方法结合张量分解对更快的区域卷积神经网络(Faster RCNN)进行压缩,低维卷积层采取剪枝方法,而高维卷积层被分解为三个级联卷积层;最后,将压缩后的模型进行微调,使其在训练集上重新达到收敛状态。在PASCAL VOC测试集上的实验结果表明,所提方法降低了Faster RCNN模型54%的存储空间而精确率仅下降了0.58%,同时在树莓派4B系统上达到1.4倍的前向计算加速,有助于深度CNN模型在资源受限的嵌入式设备上的部署。  相似文献   

5.
深层卷积神经网络所需的计算量和存储空间严重制约了其在资源有限平台上的应用与部署。针对基于单一参数重要性评价或者特征重建的剪枝算法泛化能力较差的问题,提出基于敏感度的集成剪枝算法,利用BN层的缩放因子稀疏YOLO网络中卷积核个数较多的冗余层,结合3种参数重要性评价方法对卷积核做重要性排序,并根据敏感度确定每一层的剪枝比率。实验结果表明,该剪枝算法对于YOLOv3和YOLOv3-tiny网络分别缩减80.5%和92.6%的参数量,并且相比基于网络轻量化方法的剪枝算法提升了网络模型压缩后的检测精度和泛化能力。  相似文献   

6.
深度卷积神经网络的存储和计算需求巨大,难以在一些资源受限的嵌入式设备上进行部署。为尽可能减少深度卷积神经网络模型在推理过程中的资源消耗,引入基于几何中值的卷积核重要性判断标准,提出一种融合弱层惩罚的结构化非均匀卷积神经网络模型剪枝方法。使用欧式距离计算各层卷积核间的信息距离,利用各卷积层信息距离的数据分布特征识别弱层,通过基于贡献度的归一化函数进行弱层惩罚,消除各层间的差异性。在全局层面评估卷积核重要性,利用全局掩码技术对所有卷积核实现动态剪枝。在CIFAR-10、CIFAR-100和SVHN数据集上的实验结果表明,与SFP、PFEC、FPGM和MIL剪枝方法相比,该方法剪枝得到的VGG16单分支、Resnet多分支、Mobilenet-v1轻量化网络模型在保证精度损失较小的情况下,有效地减少了模型参数量和浮点操作数。  相似文献   

7.
现有卷积神经网络模型剪枝方法仅依靠自身参数信息难以准确评估参数重要性,容易造成参数误剪且影响网络模型整体性能。提出一种改进的卷积神经网络模型剪枝方法,通过对卷积神经网络模型进行稀疏正则化训练,得到参数较稀疏的深度卷积神经网络模型,并结合卷积层和BN层的稀疏性进行结构化剪枝去除冗余滤波器。在CIFAR-10、CIFAR-100和SVHN数据集上的实验结果表明,该方法能有效压缩网络模型规模并降低计算复杂度,尤其在SVHN数据集上,压缩后的VGG-16网络模型在参数量和浮点运算量分别减少97.3%和91.2%的情况下,图像分类准确率仅损失了0.57个百分点。  相似文献   

8.
不同框架深度学习模型部署是人工智能落地的核心,然而模型计算量和参数量过大、编程模型未统一导致了各种新型的专用卷积神经网络(CNN)加速器层出不穷,增加了模型的部署难度。对模型压缩和编译工具链这两个方面进行了改进:在模型压缩方面,提出新的通道剪枝标准,结合了通道的相关性和影响性以及输出通道对应的激活值,在保证精度的同时可以极大地削减卷积神经网络的计算量和参数量;在编译工具链方面,设计了一套自动的端到端优化堆栈,提出了针对基于现场可编程门阵列(FPGA)的深度学习编译器设计方法,并在中间表示中添加了所提出的排序标准的剪枝算法。实验结果表明,所设计的编译器于舰船目标检测的任务中,在通用设备上,保证精度损失不超过1%的情况下取得了1.3倍的加速效果;在专用的CNN加速器上取得了1.6倍的加速效果,在部署中能够有效地针对卷积网络进行加速。  相似文献   

9.
面对多样化的应用环境,卷积神经网络(CNN)的架构深度不断增加以提升精度,但同时需要大量的计算参数和网络存储。针对CNN卷积层参数冗余和运算效率低的问题,提出一种基于分层阈值的自适应动态剪枝方法。设计自适应分层阈值判断算法,对批归一化层的尺度因子进行聚类分析,自适应地找到每层的分类断点并据此确定最终阈值,利用该阈值修剪正则化后的输入模型,从而避免根据经验人为定义固定阈值,减小模型尺寸和运行时占用的内存。分别采用该方法和LIU等提出的使用固定阈值且全局修剪的方法对VGGNet、ResNet、DenseNet和LeNet模型进行压缩,并在CIFAR、SVHN和MNIST数据集上测试模型性能。实验结果表明,该方法能够在模型精度与剪枝率之间找到最优平衡,剪枝后模型的测试错误率较对比方法降低0.02~1.52个百分点,同时自适应分层阈值判断算法也能避免对比方法在全局修剪时减去整个层的问题。  相似文献   

10.
不同框架深度学习模型部署是人工智能落地的核心,然而模型计算量和参数量过大、编程模型未统一导致了各种新型的专用卷积神经网络(CNN)加速器层出不穷,增加了模型的部署难度。对模型压缩和编译工具链这两个方面进行了改进:在模型压缩方面,提出新的通道剪枝标准,结合了通道的相关性和影响性以及输出通道对应的激活值,在保证精度的同时可以极大地削减卷积神经网络的计算量和参数量;在编译工具链方面,设计了一套自动的端到端优化堆栈,提出了针对基于现场可编程门阵列(FPGA)的深度学习编译器设计方法,并在中间表示中添加了所提出的排序标准的剪枝算法。实验结果表明,所设计的编译器于舰船目标检测的任务中,在通用设备上,保证精度损失不超过1%的情况下取得了1.3倍的加速效果;在专用的CNN加速器上取得了1.6倍的加速效果,在部署中能够有效地针对卷积网络进行加速。  相似文献   

11.
在边缘设备上运行深度神经网络模型并进行实时性分析,需要对网络模型进行压缩以减少模型参数量和计算量,但现有剪枝算法存在耗时长和模型压缩率低的问题。提出一种基于梯度设置不同阈值的结构化剪枝算法。对神经元进行细粒度评价,采用神经网络的梯度信息衡量权重的重要性,通过网格搜索和计算曲率的方式获取不同网络层的剪枝权重阈值,根据搜索后的剩余参数量确定不同网络层的卷积核中需要剔除的冗余参数。在此基础上,保留网络层中有效参数较多的卷积核,实现对卷积核个数的调整,进而重新训练以保证模型精度。分别对VGG16、ResNet50分类模型和SSD、Yolov4、MaskRCNN目标检测模型进行剪枝实验,结果表明,经该算法剪枝后,分类模型参数量减少92%以上,计算量减少70%以上,目标检测模型参数量减少75%以上,计算量减少57%以上,剪枝效果优于Rethinking、PF等算法。  相似文献   

12.
卷积神经网络(CNN)具有强大的特征提取能力,能够有效地提高高光谱图像的分类精度.然而CNN模型训练需要大量的训练样本参与,以防止过拟合,Gabor滤波器以非监督的方式提取图像的边缘和纹理等空间信息,能够减轻CNN模型对训练样本的依赖度及特征提取的压力.为了充分利用CNN和Gabor滤波器的优势,提出了一种双通道CNN和三维Gabor滤波器相结合的高光谱图像分类方法Gabor-DC-CNN.首先利用二维卷积神经网络(2D-CNN)模型处理原始高光谱图像数据,提取图像的深层空间特征;同时利用一维卷积神经网络(1D-CNN)模型处理三维Gabor特征数据,进一步提取图像的深层光谱-纹理特征.连接2个CNN模型的全连接层实现特征融合,并将融合特征输入到分类层中完成分类.实验结果表明,该方法能够有效地提高分类精度,在Indian Pines,Pavia University和Kennedy Space Center 3组数据上分别达到98.95%,99.56%和99.67%.  相似文献   

13.
针对卷积神经网络模型参数规模越来越大导致难以在计算与存储资源有限的嵌入式设备上大规模部署的问题,提出一种降低参数规模的卷积神经网络模型压缩方法。通过分析发现,卷积层参数量与输入输出特征图数量以及卷积核大小有关,而全连接层参数数量众多且难以大幅减少。通过分组卷积减少输入输出特征图数量,通过卷积拆分减小卷积核大小,同时采用全局平均池化层代替全连接层的方法来解决全连接层参数数量众多的问题。将上述方法应用于LeNet5和AlexNet进行实验,实验结果表明通过使用组合压缩方法对LeNet5模型进行最大压缩后,参数规模可减少97%,识别准确率降低了不到2个百分点,而压缩后的AlexNet模型参数规模可减少95%,识别准确率提高了6.72个百分点,在保证卷积神经网络精度的前提下,可大幅减少模型的参数量。  相似文献   

14.
针对现有卷积神经网络(CNN)模型计算效率低、内存带宽浪费大等问题,提出了一种基于现场可编程门阵列(FPGA)优化压缩策略。对预先训练好的CNN模型进行分层剪枝,采用基于新型的遗传算法进行信道剪枝,同时设计了两步逼近适应度函数,进一步提高了遗传过程的效率。此外,通过对剪枝CNN模型进行数据量化,使得卷积层和全连接层的权值根据各自的数据结构以完全不同的方式存储,从而减少了存储开销。实验结果表明,在输入4 000个训练图像进行压缩过程中,该方法所耗压缩时间仅为15.9 s。  相似文献   

15.
针对卷积神经网络(CNN)模型现有剪枝策略各尽不同和效果一般的情况,提出了基于激活-熵的分层迭代剪枝(AE-LIP)策略,保证模型精度在可控范围内的同时缩减模型的参数量。首先,结合神经元激活值和信息熵,构建基于激活-熵的权重评判准则,计算权值重要性得分;然后,逐层剪枝,根据重要性得分对权值排序,并结合各层剪枝数量筛选出待剪枝权重并将其设置为0;最后,微调模型,重复上述过程,直至迭代结束。实验结果表明,采用基于激活-熵的分层迭代剪枝策略:AlexNet模型压缩了87.5%;相应的准确率下降了2.12个百分点,比采用基于幅度的权重剪枝策略提高了1.54个百分点,比采用基于相关性的权重剪枝策略提高0.91个百分点。VGG-16模型压缩了84.1%;相应的准确率下降了2.62个百分点,比采用上述两个对比策略分别提高了0.62个百分点和0.27个百分点。说明所提策略在保证模型精确度下有效缩减了CNN模型的大小,有助于CNN模型在存储受限的移动设备上的部署。  相似文献   

16.
针对传统卷积神经网络(CNN)稀疏网络结构无法保留全连接网络密集计算的高效性和实验过程中激活函数的经验性选择造成结果不准确或计算量大的问题,提出一种改进卷积神经网络方法对遥感图像进行分类。首先,利用Inception模块的不同尺度卷积核提取图像多尺度特征,然后利用Maxout模型学习隐藏层节点的激活函数,最后通过Softmax方法对图像进行分类。在美国土地使用分类数据集(UCM_LandUse_21)上进行的实验结果表明,在卷积层数相同的情况下,所提方法比传统的CNN方法分类精度提高了约3.66%,比同样也基于多尺度深度卷积神经网络(MS_DCNN)方法分类精度提高了2.11%,比基于低层特征和中层特征的视觉词典等方法分类精度更是提高了10%以上。因此,所提方法具有较高的分类效率,适用于图像分类。  相似文献   

17.
卷积神经网络在计算机视觉等多个领域应用广泛,然而其模型参数量众多、计算开销庞大,导致许多边缘设备无法满足其存储与计算资源要求。针对其边缘部署困难,提出使用迁移学习策略改进基于BN层缩放因子通道剪枝方法的稀疏化过程。本文对比不同层级迁移方案对稀疏化效果与通道剪枝选取容限的影响;并基于网络结构搜索观点设计实验,探究其精度保持极限与迭代结构的收敛性。实验结果表明,对比原模型,采用迁移学习的通道剪枝算法,在精度损失不超过0.10的前提下,参数量减少89.1%,模型存储大小压缩89.3%;对比原剪枝方法,将剪枝阈值从0.85提升到0.97,进一步减少参数42.6%。实验证明,引入迁移策略更易实现充分的稀疏化,提高通道剪枝阈值选取容限,实现更高压缩率;并在迭代剪枝的网络结构搜索过程中,提供更高效的搜索起点,利于快速迭代趋近至搜索空间的一个网络结构局部最优解。  相似文献   

18.
卷积神经网络的研究取得一系列突破性成果,其优秀表现是由深层结构支撑的。针对复杂的卷积神经网络在参数量及计算量上存在大量的冗余问题,提出一种简洁有效的网络模型压缩算法。首先,通过计算卷积核之间的皮尔逊相关系数判断相关性,循环删除冗余参数,从而压缩卷积层。其次,采用局部-全局的微调策略,恢复网络性能。最后,提出一种参数正交正则,促使卷积核之间的正交化,进而减少冗余特征。实验结果表明,在MNIST数据集上,该压缩算法能够在不损失测试精度的前提下,使AlexNet卷积层的参数量压缩率达到53.2%,浮点操作计算量可以减少42.8%,并且网络模型收敛后具有较小的误差。  相似文献   

19.
YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时将YOLOv4网络中的普通卷积替换为深度可分离卷积,降低算法参数量、计算量和模型占用空间。在ShuffleNet V2网络结构的改进过程中分析并剪裁其基本组件,利用2个3 × 3卷积核级联的方式增强网络感受野,并使用Mish激活函数进一步提升网络检测精度和模型推理速度。在GPU平台和VisDrone 2020数据集上的实验结果表明,与YOLOv4算法相比,改进的YOLOv4算法在牺牲1.8个百分点的检测精度情况下,提高了27%的检测速度,压缩了23.7%的模型容量,并且能够充分发挥ZYNQ平台并行高速数据处理及低功耗的优势。  相似文献   

20.
由于球的形状特点,视觉方法需要处理多个角度的图像才能实现对单个球进行完整的缺陷识别,对图像处理速度要求较高。此外,卷积神经网络的浮点运算量(FLOPs)高,推理速度通常较慢。针对上述问题,基于MobileNetV3设计了更轻量化的卷积神经网络。首先通过改变宽度因子、减少基本单元数量、使用Ghost模块代替标准卷积降低原始网络参数量。最后通过坐标注意力机制提高网络对缺陷的识别准确率。实验结果表明,在氮化硅陶瓷球表面缺陷数据集上,提出的轻量化卷积神经网络相较于原始网络仅有2.2%的准确率损失。网络浮点运算量和参数量分别为原始网络的10.4%和3.3%,在边缘计算设备Jetson AGX Xavier上的推理时间小于7ms,相较于原始网络提升超过40%,能够满足工业现场实时检测的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号