首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
在实验室研制了不同Ti、Nb含量的热轧钢板,并对钢板进行了轧后冷却试验,研究了Ti、Nb微合化和热轧工艺对钢板组织和力学性能的影响。在实验室研究基础上,采用微合金化工艺路线,通过控轧控冷工艺,终轧后层流冷却工艺(卷取温度采用590℃),成功试制了700 MPa级工程机械用钢。结果显示,试验钢的屈服强度大于700 MPa,抗拉强度大于785MPa,并具有良好的冲击性能、成形性能。试验钢的组织为铁素体+少量珠光体+微量马氏体,同时,在铁素体的基体上存在大量纳米级的弥散析出或相间析出的(Nb,Ti)(C,N)析出相,有效提高了试验钢的强度。  相似文献   

2.
《塑性工程学报》2016,(1):58-62
研究了热轧关键工艺参数对高碳带钢的组织和力学性能的影响。结果表明,终轧温度对屈服强度影响较显著,终轧温度由870℃~880℃提高至900℃~910℃时,50CrV4的珠光体片层间距减小约20%,屈服强度和抗拉强度分别增加91MPa和30MPa;卷取温度由620℃~630℃提高至690℃~700℃和钢卷加保温罩缓冷,分别使65Mn和50Mn2V的珠光体片层间距增大接近1倍,屈服强度和抗拉强度均降低200MPa以上,塑性提高5%~6%。  相似文献   

3.
对一种Mo-Ti微合金钢进行了热轧实验,研究了不同工艺条件下的组织特征、析出行为及低温冲击性能。结果表明,随着终轧温度及终冷温度的降低,实验钢的屈服强度和抗拉强度均有所升高;当终轧温度较高时,细小的析出物主要在冷却及模拟卷取过程中产生,当终轧温度较低时,细小的析出物主要由应变诱导析出及冷却、模拟卷取过程的析出物组成;实验钢的组织以铁素体为主,随着终轧温度及终冷温度的降低,晶粒尺寸明显细化,同时,组织中渗碳体及钛的碳化物等岛状物的尺寸也变小,大角度晶界比例增加,低温冲击裂纹由脆性断裂变为韧性断裂;当终轧温度为800~810℃,终冷温度分别为615℃和500℃时,实验钢的屈服强度分别为738 MPa及768 MPa,抗拉强度分别为857 MPa和872 MPa,伸长率为18%~19%,其韧脆转变温度低于-70℃,实验钢具有良好的强度及韧性指标。  相似文献   

4.
随着汽车行业的发展,先进高强钢的研究与应用越来越广泛。设计了低C,以Cr、Mn、Si为基本元素,复合添加Ti、Nb、V、Mo等元素的复相(CP)钢化学成分;通过控轧控冷工艺,充分发挥了马氏体和贝氏体相变强化及合金元素的析出强化、细晶强化的复合作用,成功获得了屈服强度大于680 MPa,抗拉强度大于780 MPa,伸长率大于10%的热轧CP钢。研究了不同终轧温度、卷取温度下钢板的组织形貌和析出物大小对其力学性能和扩孔性能的影响,得到了最佳终轧温度为890 ℃,卷取温度为490 ℃。在此工艺下,试制钢板的组织形貌和析出物大小得到了良好的配合,其扩孔率达到47%,扩孔性能最优。  相似文献   

5.
试验研究了超高强度复相钢CP800的相变动力学、热轧工艺和析出行为。结果表明,CP800钢的贝氏体区与铁素体区分离,贝氏体和铁素体区宽广,珠光体区较窄;在400~600℃之间发生贝氏体转变,贝氏体相变的临界转变速率约25℃/s。在不同终轧温度和卷取温度下,CP800钢的屈服强度均高于680 MPa,抗拉强度均高于760 MPa。随着卷取温度的提高,屈服、抗拉强度上升,断后伸长率提高,扩孔率降低。终轧温度由920℃降低至880℃时,强度变化不显著,但断后伸长率显著上升,扩孔率显著下降。随着热处理温度的升高,Ti C的析出导致试验钢的屈服强度和抗拉强度逐步提高,而当热处理温度提高至两相区后,冷却过程中的铁素体相变导致强度急剧降低。  相似文献   

6.
对Ti、Ti-Mo微合金钢进行了热轧及离线回火实验,研究了终轧温度、终冷温度及回火温度对实验钢力学性能的影响,并定量分析了相应的强化机制。结果表明,当终轧温度较高时,Ti、Ti-Mo微合金钢的热轧态力学性能较优,经过回火处理后,对应的屈服强度升高,分别达到了715 MPa和710 MPa。回火工艺处理后,Ti、Ti-Mo微合金钢的最大屈服强度增量分别为29 MPa和161 MPa,最大抗拉强度增量分别为7 MPa和88 MPa。实验钢铁素体基体上均存在相间析出与弥散析出,其中弥散析出所占比例较大,在不同工艺下Ti、Ti-Mo微合金钢中析出强化量占屈服强度的比值分别为20%~51%和26%~48%,对应最大析出强化量分别为364 MPa和342 MPa。  相似文献   

7.
采用低C添加Si Mn Nb Ti成分,通过两阶段控制轧制开发出了屈服强度为700MPa级热轧带钢。研究了不同轧制温度对钢板力学性能及析出粒子的影响规律,并采用TEM、SEM等实验技术对钢板经不同时间时效处理后的组织及析出强化规律进行了研究。结果表明,高温轧制更有利于析出粒子在后续卷取保温过程中的析出,从而提高强度;降低终轧温度能获得良好的韧性。  相似文献   

8.
终轧温度对热轧细晶双相钢组织与性能的影响   总被引:1,自引:1,他引:0  
研究低温区大变形结合轧后连续冷却工艺时,终轧温度对低Si含Nb热轧细晶双相钢组织和力学性能的影响.结果表明:随着终轧温度的升高,组织中铁素体含量降低,铁素体晶粒尺寸稍微增大(3~4 μm),马氏体呈细小岛状弥散分布于铁素体基体上;终轧温度对屈服强度影响不大,但随着终轧温度的升高,抗拉强度提高,屈强比和伸长率降低,n值升高.试验条件下,试验钢最佳的终轧温度为810~850 ℃,钢板的抗拉强度可到700 MPa以上,屈强比低于0.66,n值达到0.17,伸长率高于22.5%.  相似文献   

9.
采用轧后空冷+超快速冷却的方式,研究了开冷温度对热轧铁素体/贝氏体(F/B)双相钢组织性能的影响。结果表明:开冷温度显著影响F/B双相钢的显微组织和性能。开冷温度由747 ℃降至700 ℃时,铁素体体积分数由17.3%增至85.7%,铁素体晶粒尺寸由3.3 μm粗化至3.6 μm,贝氏体中析出的碳化物含量增加。同时,F/B双相钢的屈服强度从594 MPa降至475 MPa,抗拉强度从648 MPa降至532 MPa,伸长率从17.7%升至34.3%,扩孔率从36.4%提高至82.8%。因此,为实现热轧F/B双相钢力学性能和扩孔性能的平衡,开冷温度应控制在730~700 ℃。  相似文献   

10.
对压力容器用钢Q345R开展终冷试验,研究终冷温度对轧态及正火态钢板力学性能与显微组织的影响。结果表明,在不同终冷温度下,轧态及正火态Q345R钢的力学性能均满足标准要求,但轧后直接空冷时,性能余量较小,在终冷温度为650 ℃时,力学性能较好;随着终冷温度的升高,钢板的屈服强度、抗拉强度、冲击性能均有下降的趋势,组织逐渐变粗大;轧态及正火态试样的微观组织均为典型的铁素体+珠光体,与热轧态钢板相比,正火态钢板的屈服强度和抗拉强度均明显降低,但冲击性能显著提高,且正火后组织有所细化。  相似文献   

11.
对00Cr12N iNbTi铁素体不锈钢进行加热、粗轧、精轧及卷取过程的模拟实验,应用扫描电镜、透射电镜、化学相分析及热模拟等方法对试样中析出物进行了定性定量分析。结果表明:加热到1140℃,保温0、45和90 m in后,粒子主要为TiN,Ti的固溶率为66.3%,N的固溶率为1.3%;从粗轧到精轧,微米级的小颗粒减少,大颗粒增多,颗粒平均尺寸由1.8μm增大到3.2μm,有聚集长大现象;在热轧过程中微米级粒子形貌为方形或球形,基本保持稳定;纳米级的(Nb,Ti)C颗粒在精轧阶段开始析出,卷取保温及缓冷至室温过程中大量析出,多分布于晶界及晶内处,在较高温度下卷取会析出较多的纳米级(Nb,Ti)C颗粒。  相似文献   

12.
冷却方式对Nb-Ti微合金钢组织和性能及沉淀行为的影响   总被引:2,自引:0,他引:2  
两阶段控制轧制后,采用不同的冷却路径进行冷却,研究冷却路径对Nb-Ti微合金钢组织和性能及沉淀行为的影响.结果表明,超快冷+空冷冷却路径可获得细晶组织,晶粒平均尺寸约为7.76μm,屈服强度高达425 MPa,抗拉强度高达500 MPa.超快冷+炉冷试样中存在细小的沉淀粒子,沉淀粒子尺寸主要集中在2—7 nm,而超快冷+空冷试样中只存在少量球形沉淀粒子,轧后直接空冷可获得相间沉淀粒子.不同冷却路径获得的热轧板在700℃下退火300 s后,沉淀粒子发生明显的粗化;退火处理后,超快冷+炉冷试样的晶粒平均尺寸减小为6.47μm,相对于退火前,其屈服强度和抗拉强度分别增加50和30 MPa、强度的增加主要源于细晶强化.对于含0.03%Nb(质量分数)的Nb-Ti微合金钢,由于沉淀粒子的体积分数有限,因此细晶强化效果远高于沉淀强化效果,强度的变化与晶粒尺寸的变化具有很好的对应性.另外,加工硬化指数与晶粒尺寸密切相关.随着晶粒平均尺寸的增加使加工硬化指数增加.  相似文献   

13.
刘丽萍  关晓光 《轧钢》2018,35(2):20-25
利用Gleeble-3500热-力模拟试验机并通过实验室热机轧制,研究了加热温度、终轧温度、轧后冷却速率、卷取温度及卷取后保温时间对T700钢显微组织、析出物和性能的影响规律,并在此基础上经工业试制,开发出满足用户要求的抗拉强度700MPa级高强汽车用钢板。研究表明:在设定的化学成分条件下,较适宜的加热温度为1 240~1 270℃,终轧温度为860~890℃,卷取温度为550~600℃。  相似文献   

14.
两阶段控制轧制后,采用不同的冷却路径进行冷却,研究冷却路径对Nb-Ti微合金钢组织和性能及沉淀行为的影响.结果表明,超快冷+空冷冷却路径可获得细晶组织,晶粒平均尺寸约为7.76μm,屈服强度高达425 MPa,抗拉强度高达500 MPa.超快冷+炉冷试样中存在细小的沉淀粒子,沉淀粒子尺寸主要集中在2-7 nm,而超快冷+空冷试样中只存在少量球形沉淀粒子,轧后直接空冷可获得相间沉淀粒子.不同冷却路径获得的热轧板在700℃下退火300 s后,沉淀粒子发生明显的粗化;退火处理后,超快冷+炉冷试样的晶粒平均尺寸减小为6.47μm,相对于退火前,其屈服强度和抗拉强度分别增加50和30 MPa,强度的增加主要源于细晶强化.对于含0.03%Nb(质量分数)的Nb-Ti微合金钢,由于沉淀粒子的体积分数有限,因此细晶强化效果远高于沉淀强化效果,强度的变化与晶粒尺寸的变化具有很好的对应性.另外,加工硬化指数与晶粒尺寸密切相关,随着晶粒平均尺寸的增加使加工硬化指数增加.  相似文献   

15.
研究了CSP工艺制度对热轧酸洗深冲板SPHD力学性能的影响。结果表明,采用50%粗轧大压下量,终轧温度为900℃、终轧压下量小于18%,卷取温度为630℃,分段冷却,在热连轧过程中投入辊缝润滑,可有效降低材料的屈强比,提高深冲性能。  相似文献   

16.
对CSP产线供冷轧Nb、Ti高强钢屈强比降低工艺方案进行了研究,结合CSP产线特点,分析了不同卷取温度和层冷模式对冷轧Nb、Ti高强钢性能、组织及析出物的影响。结果表明,通过对CSP产线卷取温度及层冷模式的控制,可以降低冷轧Nb、Ti高强钢屈强比,且产品性能稳定。  相似文献   

17.
为了提高管线用钢的安全服役性能,使其获得良好的强韧性和较低的屈强比,采用现场小批量试制试验,研究了不同控轧控冷工艺对L450M管线钢组织性能的影响。结果表明:L450M管线钢采用粗轧开轧温度1 010~1 050℃,精轧开轧温度920~960℃,精轧终轧温度790~830℃,终冷温度550~580℃,屈服强度可达到475~513 MPa,抗拉强度565~583 MPa,伸长率32%~38%,屈强比0.82~0.88,-20℃横向冲击功188~285 J,满足API SPEC 5L-2018标准要求;适当提高精轧终轧温度、降低粗轧阶段变形量、减少精轧阶段轧制道次,有利于降低L450M管线钢的屈强比;适当降低冷速、提高终冷温度,使L450M管线钢显微组织中先共析铁素体比例增加,有利于降低屈强比。  相似文献   

18.
为实现高品质Ti微合金化高强钢的工业化生产,通过热模拟试验研究了加热温度、终轧温度、精轧阶段变形量、冷却速率和卷取温度对Ti微合金化高强钢组织性能的影响规律。结果表明,随着加热温度的升高,铁素体晶粒尺寸显著增大,试验钢硬度增大。随着终轧温度的降低和冷却速率的增大,铁素体晶粒尺寸逐渐减小,贝氏体含量增加,试验钢硬度增大。随着精轧阶段变形量的增大,铁素体含量增加,组织得到细化,细晶强化和相变强化共同作用的结果使得试验钢硬度逐渐降低。随着卷取温度的降低,试验钢的硬度先升高后降低,当卷取温度为610 ℃时,试验钢硬度最高。  相似文献   

19.
王畅  王林  于洋  高小丽  吴耐  陈瑾 《轧钢》2021,38(1):20-25
利用电阻炉、Gleeble热模拟试验机和透射电镜,分析了高强IF钢中FeTiP相在热轧过程的析出行为.结果表明,高强IF钢连铸坯中心位置存在少量的FeTiP相析出物,但经过加热和长时间保温,析出物可完全回溶;在热轧过程中,轧制温度范围内的应变诱导析出物主要为TiS相、Ti4C2S2相和TiC相,难以捕捉到明显的FeTi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号