首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesoporous titania–organosilica nanoparticles comprised of anatase nanocrystals crosslinked with organosilica moieties have been prepared by direct co‐condensation of a titania precursor, tetrabuthylortotitanate (TBOT), with two organosilica precursors, 1,4‐bis(triethoxysilyl) benzene (BTEB) and 1,2‐bis(triethoxysilyl) ethane (BTEE), in mild conditions and in the absence of surfactant. These hybrid materials show both high surface areas (200–360 m2 g?1) and pore volumes (0.3 cm3 g?1) even after calcination, and excellent photoactivity in the degradation of rhodamine 6G and in the partial oxidation of propene under UV irradiation, especially after the calcination of the samples. During calcination, there is a change in the TiIV coordination and an increase in the content of Si?O?Ti moieties in comparison with the uncalcined materials, which seems to be responsible for the enhanced photocatalytic activity of hybrid titania–silica materials as compared to both uncalcined samples and the control TiO2.  相似文献   

2.
Noble‐metal aerogels (NMAs) have drawn increasing attention because of their self‐supported conductive networks, high surface areas, and numerous optically/catalytically active sites, enabling their impressive performance in diverse fields. However, the fabrication methods suffer from tedious procedures, long preparation times, unavoidable impurities, and uncontrolled multiscale structures, discouraging their developments. By utilizing the self‐healing properties of noble‐metal aggregates, the freezing‐promoted salting‐out behavior, and the ice‐templating effect, a freeze–thaw method is crafted that is capable of preparing various hierarchically structured noble‐metal gels within one day without extra additives. In light of their cleanliness, the multi‐scale structures, and combined catalytic/optical properties, the electrocatalytic and photoelectrocatalytic performance of NMAs are demonstrated, which surpasses that of commercial noble‐metal catalysts.  相似文献   

3.
Two titania photocatalysts have been prepared using the sol–gel method using TiCl4 as a precursor, and two different alcohols, namely, ethanol or propanol (Et or Pr). The main aim of this work was to study the effect of the nature of the alcohol on the chemical, structural and photocatalytic properties for paracetamol photodegradation of the final solids. The TiCl4/alcohol molar ratio to obtain the corresponding alkoxides (TiEt and TiPr) was 1/10. These alkoxides were calcined at 400 °C to prepare the oxide catalysts (named as TiEt400 and TiPr400). Powder X-ray diffraction (PXRD) of the original samples showed the presence of anatase diffraction peaks in sample TiPr, while TiEt is a completely amorphous material. Contrary to commercial TiO2-P25, the PXRD diagrams of the calcined samples showed anatase as the exclusive crystalline phase in both solids. The specific surface area (SBET) of sample TiPr400 was larger than that of sample TiEt400, and both larger than that of TiO2-P25. The three solids have been tested in the photodegradation of paracetamol in aqueous solution. It has been established that the alcohol used influences the properties and catalytic activity of the final oxides. The synthesized solids exhibit a higher activity than commercial TiO2-P25, because of their structural characteristics and larger SBET.  相似文献   

4.
The surface modification of mesoporous silica monoliths through thiol–ene chemistry is reported. First, mesoporous silica monoliths with vinyl, allyl, and thiol groups were synthesized through a sol–gel hydrolysis–polycondensation reaction from tetramethyl orthosilicate (TMOS) and vinyltriethoxysilane, allyltriethoxysilane, and (3‐mercaptopropyl)trimethoxysilane, respectively. By variation of the molar ratio of the comonomers TMOS and functional silane, mesoporous silica objects containing different amounts of vinyl, allyl, and thiol groups were obtained. These intermediates can subsequently be derivatized through radical photoaddition reactions either with a thiol or an olefin, depending on the initial pore wall functionality, to yield silica monoliths with different pore‐wall chemistries. Nitrogen sorption, small‐angle X‐ray scattering, solid‐state NMR spectroscopy, elemental analysis, thermogravimetric analysis, and redox titration demonstrate that the synthetic pathway influences the morphology and pore characteristics of the resulting monoliths and also plays a significant role in the efficiency of functionalization. Moreover, the different reactivity of the vinyl and allyl groups on the pore wall affects the addition reaction, and hence, the degree of the pore‐wall functionalization. This report demonstrates that thiol–ene photoaddition reactions are a versatile platform for the generation of a large variety of organically modified silica monoliths with different pore surfaces.  相似文献   

5.
The effect of polymer–filler interaction on solvent swelling and dynamic mechanical properties of the sol–gel derived acrylic rubber (ACM)/silica, epoxidized natural rubber (ENR)/silica, and poly (vinyl alcohol) (PVA)/silica hybrid nanocomposites has been described for the first time. Tetraethoxysilane (TEOS) at three different concentrations (10, 30, and 50 wt %) was used as the precursor for in situ silica generation. Equilibrium swelling of the hybrid nanocomposites in respective solvents at ambient condition showed highest volume fraction of the polymer in the swollen gel in PVA/silica system and least in ACM/silica, with ENR/silica recording an intermediate value. The Kraus constant (C) also followed a similar trend. In dynamic mechanical analysis, the storage modulus dropped at higher strain (>1%), which indicated disengagement of polymer segments from the filler surfaces. This drop was maximum in ACM/silica, intermediate in ENR/silica, and minimum in PVA/silica, both at 50 and 70 °C. The drop in modulus with theoretical volume fraction of silica (ϕ) was interpreted with the help of a Power law model ΔE′ = a1ϕ, where a1 was a constant and b1 was primarily a filler attachment parameter. Strain dependence of loss modulus was observed in ACM/silica hybrid nanocomposites, while ENR/silica and PVA/silica nanocomposites showed almost strain‐independent behavior. The storage modulus showed sharp increase with increasing frequency in ACM/silica system, while that was lower in both ENR/silica (at higher frequency) and PVA/silica systems (in the entire frequency spectrum). The increase in modulus with ϕ also followed similar model ΔE′ = a2ϕ proposed in the strain sweep mode. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2399–2412, 2005  相似文献   

6.
The effect on titania of doping with lithium and rubidium titania gels has been studied in samples prepared with titanium (IV) tetra-n-butoxide co-gelling with the alkaline metal precursors. Titania and doped titania were characterized by X-Ray diffraction, which showed that the catalysts were nanostructured. In samples calcined at 400°C, the crystallite size of the anatase phase was 17 and 14 nm, and 78 and 38 nm for samples calcined at 600°C, for Li/TiO2 and Rb/TiO2, respectively. The specific surface areas of doped samples (400°C) are lower in Li/TiO2 (90 m2/g) than in Rb/TiO2(125 m2/g). Evaluation of their basic properties has been carried out in the acetone condensation reaction. It was found that the activity strongly depended on the Li and Rb ionic radii.  相似文献   

7.
Hybrid polyimide/silica materials were prepared from polyimides bearing reactive functions along the polymer backbone, which can react with. The silica phase was formed by sol–gel process using ammonium hydroxide catalyst. Silica fillers prepared under basic conditions were compared with materials prepared using chlorhydric acid. The synthesized hybrid materials were characterized by TGA, IRTF, and NMR. The density of the different systems was also measured. The morphology of these hybrid systems were investigated by both scanning and transmission electron microscope. Thermal properties of the composites were also evaluated by DSC and DMA. The morphology of silica fillers highly depends on the catalyst, on the reaction conditions of the sol–gel process, and the linking formation with the polyimide. It results that optimized conditions lead to homogeneous hybrid films containing 12 wt % of silica particles of about 20 nm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1891–1902, 2008  相似文献   

8.
9.
10.
Two new bridged alkoxysilanes, bis(triethoxysilylalkyl)‐N,N′‐oxalylureas (alkyl = methyl or n‐propyl), bearing a highly rigid and polar oxalylurea unit in the bridges, were employed as precursors of bridged silica membranes. The gas and water separation performance of the membranes prepared from the precursors using the sol–gel process was investigated. Interestingly, the membrane properties depended on the alkyl chain length. The membrane containing methylene units (alkyl = methyl) was porous and rather hydrophilic but the other with longer propylene units (alkyl = n‐propyl) was non‐porous and more hydrophobic. High H2/SF6 gas permeance ratios of 3100 and 1700, and NaCl rejections of 89 and 85% for 2000 ppm aqueous NaCl were obtained using the membranes containing methyl and n‐propyl, respectively. The membrane with alkyl = methyl also showed a high CO2/N2 permeance ratio of 20.6 at 50°C. These results indicate the potential applications of the membranes as gas and water separation materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Poly(imide–silica) hybrid materials with covalent bonds were prepared by (3-aminopropyl)methyldiethoxysilane (APrMDEOS) terminated amic acid, water, and tetramethoxysilane (TMOS) via a sol–gel technique. Infrared (IR), 29Si and 13C CP/MAS nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA) were used to study hybrids containing various proportions of TMOS and hydrolysis ratios. The microstructure and chain mobility of hybrids were investigated by proton spin–spin relaxation T2 measurements. The apparent activation energy Ea for degradation of hybrids in air was studied by the van Krevelen method. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2275–2284, 1999  相似文献   

12.
This paper describes the effect of sulfate, phosphate and nitrate complexing ligands on the structural features of amorphous xerogels and on the crystallization of metastable zirconia phases during the xerogel-ceramic conversion. Powdered samples were prepared by a sol–gel route using zirconyl chloride precursors chemically modified by complexing ligands. The structural evolution of ZrO2 phases as function of firing temperature was analyzed by XRPD, EXAFS and 31P NMR/MAS. The experimental results show the formation of metastable t-ZrO2 during the low firing temperature of xerogels modified by sulfate or phosphate groups. The martensitic tetragonal-monoclinic transformation occurs during desorption of sulfate groups. The largest temperature interval of stability of metastable tetragonal zirconia was observed for phosphate-modified xerogels.  相似文献   

13.
3D Hierarchical porous metal–organic framework (MOF) monoliths are prepared by using Pickering high internal phase emulsion (HIPE) template. Pickering HIPEs were stabilized solely by UiO‐66 MOF particles with internal phase up to 90 % of the volume. The effects of internal phase type and volume, as well as MOF particle concentration on the stability of resulting Pickering HIPEs were investigated. Furthermore, by adding small amount of polyvinyl alcohol (PVA) as binder or polymerization in the continuous aqueous phase, followed by freeze‐drying, two types of MOF‐based 3D hierarchical porous monoliths with ultralow density (as low as 12 mg cm?3) were successfully prepared. This Pickering HIPE template approach provides a facile and practical way for assembling of MOFs into complex structures.  相似文献   

14.
15.
Recently, organic–inorganic hybrid materials have attracted tremendous attention thanks to their outstanding properties, their efficiency, versatility and their promising applications in a broad range of areas at the interface of chemistry and biology. This article deals with a new family of surface‐reactive organic–inorganic hybrid materials built from chitosan microspheres. The gelation of chitosan (a renewable amino carbohydrate obtained by deacetylation of chitin) by pH inversion affords highly dispersed fibrillar networks shaped as self‐standing microspheres. Nanocasting of sol–gel processable monomeric alkoxides inside these natural hydrocolloids and their subsequent CO2 supercritical drying provide high‐surface‐area organic–inorganic hybrid materials. Examples including chitosan–SiO2, chitosan–TiO2, chitosan–redox‐clusters and chitosan–clay‐aerogel microspheres are described and discussed on the basis of their textural and structural properties, thermal and chemical stability and their performance in catalysis and adsorption.  相似文献   

16.
Hierarchical‐structured nanotubular silica/titania hybrids incorporated with particle‐size‐controllable ultrafine rutile titania nanocrystallites were realized by deposition of ultrathin titania sandwiched silica gel films onto each nanofiber of natural cellulose substances (e.g., common commercial filter paper) and subsequent flame burning in air. The rapid flame burning transforms the initially amorphous titania into rutile phase titania, and the silica gel films suppress the crystallite growth of rutile titania, thereby achieving nano‐precise size regulation of ultrafine rutile titania nanocrystallites densely embedded in the silica films of the nanotubes. The average diameters of these nanocrystallites are adjustable in a range of approximately 3.3–16.0 nm by a crystallite size increment rate of about 2.4 nm per titania deposition cycle. The silica films transfer the electrons activated by crystalline titania and generate catalytic reactive species at the outer surface. The size‐tuned ultrafine rutile titania nanocrystallites distributed in the unique hierarchical networks significantly improve the photocatalytic performance of the rutile phase titania, thereby enabling a highly efficient photocatalytic degradation of the methylene blue dye under ultraviolet light irradiation, which is even superior to the pure anatase‐titania‐based materials. The facile stepwise size control of the rutile titania crystallites described here opens an effective pathway for the design and preparation of fine‐nanostructured rutile phase titania materials to explore potential applications.  相似文献   

17.
In this study, polyimide–silica (PI–silica) based hybrid coating compositions were prepared from tetraethoxysilane (TEOS), γ‐glycidyloxypropyl trimethoxy silane (GOTMS), and polyamic acid (PAA) via a combination of sol–gel and thermal imidization techniques. PAA was synthesized from 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) and 3,3'‐Diaminodiphenyl sulfone (DDS) in N‐Methyl‐2‐pyrrolidone (NMP). The silica content in the hybrid coatings was varied from 0 to 20 wt%. The structural characterization of the hybrid coatings was performed using FTIR and 29Si‐NMR spectroscopies. Results from both pendulum hardness and micro indentation test show that the hardness of hybrid coatings improves with the increase in silica content. The tensile tests also demonstrated that the mechanical properties at low silica content are rather striking. Their surface morphologies were characterized by scanning electron microscopy (SEM). SEM studies revealed that inorganic particles were distributed homogenously through the PI matrix. It was also found that, incorporation of the silica domains increased the thermal stability of the hybrid coatings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Looks matter: Generally, the morphology of titania thin films is crucial for their performance, hence much effort is spent to tailor the desired morphology. X‐ray scattering enables the monitoring of the crystalline titania layer morphology during build‐up of the functional multilayer stack (see Figure). Herein evidence is provided that the morphology is preserved throughout the fabrication process.

  相似文献   


19.
The preparation of needle‐shaped SnO2 nanocrystals doped with different concentration of nickel by a simple sol–gel chemical precipitation method is demonstrated. By varying the Ni‐dopant concentration from 0 to 5 wt %, the phase purity and morphology of the SnO2 nanocrystals are significantly changed. Powder XRD results reveal that the SnO2 doped with a nickel concentration of up to 1 wt % shows a single crystalline tetragonal rutile phase, whereas a slight change in the crystallite structure is observed for samples with nickel above 1 wt %. High resolution scanning electron microscopy (HRSEM) results reveal the change in morphology of the materials from spherical, for SnO2, to very fine needle‐like nanocrystals, for Ni‐doped SnO2, annealed at different temperatures. The gas sensing properties of the SnO2 nanocrystals are significantly enhanced after the nickel doping.  相似文献   

20.
Pure and modified silica materials were synthesised by a sol–gel process and used as carrier for the controlled release of ibuprofen, selected as model drug. A one‐step synthesis was optimised for the preparation of various silica–drug composites by using tetraethoxysilane and 3‐aminopropyltriethoxysilane as precursors at different molar ratios. The presence of aminopropyl groups on the silica surface influences the drug‐delivery rate leading to a high degree the desorption process controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号