首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geocentric orbits of large eccentricity (e=0.9 to 0.95) are significantly perturbed in cislunar space by the Sun and Moon. The time-history of the height of perigee, subsequent to launch, is particularly critical. The determination of ‘launch windows’ is mostly concerned with preventing the height of perigee from falling below its low initial value before the mission lifetime has elapsed. Between the extremes of high accuracy digital integration of the equations of motion and of using an approximate, but very fast, stability criteria method, this paper is concerned with the development of a method of intermediate complexity using non-numeric computation. The computer is used as the theory generator to generalize Lidov's theory using six osculating elements. Symbolic integration is completely automatized and the output is a set of condensed formulae well suited for repeated applications in launch window analysis. Examples of applications are given.  相似文献   

2.
By linear perturbation theory, a sensitivity study is presented to calculate the contribution of the Mars gravity field to the orbital perturbations in velocity for spacecrafts in both low eccentricity Mars orbits and high eccentricity orbits(HEOs). In order to improve the solution of some low degree/order gravity coefficients, a method of choosing an appropriate semimajor axis is often used to calculate an expected orbital resonance, which will significantly amplify the magnitude of the position and velocity perturbations produced by certain gravity coefficients. We can then assess to what degree/order gravity coefficients can be recovered from the tracking data of the spacecraft. However, this existing method can only be applied to a low eccentricity orbit, and is not valid for an HEO. A new approach to choosing an appropriate semimajor axis is proposed here to analyze an orbital resonance. This approach can be applied to both low eccentricity orbits and HEOs. This small adjustment in the semimajor axis can improve the precision of gravity field coefficients and does not affect other scientific objectives.  相似文献   

3.
In order to compute with a reasonable accuracy satellite orbits subjected to perturbations byJ 2, the Sun, the Moon and airdrag, a first order expansion is used. The Lagrange equations are solved semi-analytically by the stroboscopic method. The intermediate-, long-periodic and secular terms are obtained, but if desired the same formulism also produces the short-periodic terms. The method is well suited for use on a computer and requires only about 1% of the computing time needed for numerical integration.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, August 27–September 2, 1972.  相似文献   

4.
5.
The luni-solar effects of a geosynchronous artificial satellite orbiting near the critical inclination is investigated. To tackle this four-degrees-of-freedom problem, a preliminary exploration separately analyzing each harmonic formed by a combination of the satellite longitude of the node and the Moon longitude of the node is opportune. This study demonstrates that the dynamics induced by these harmonics does not show resonance phenomena. In a second approach, the number of degrees of freedom is halved by averaging the total Hamiltonian over the two non-resonant angular variables. A semi-numerical method can now be applied as was done when considering solely the inhomogeneity of the geopotential (see Delhaise et Henrard, 1992). Approximate surfaces of section are constructed in the plane of the inclination and argument of perigee. The main effects of the Sun and Moon attractions compared to the terrestrial attraction alone are a strong increase in the amplitude of libration in inclination (from 0.6° to 3.2°) and a decrease of the corresponding libration period (from the order of 200 years to the order of 20 years).Research Assistant for the Belgian National Fund for Scientific Research  相似文献   

6.
A first-order, semi-analytical method for the long-term motion of resonant satellites is introduced. The method provides long-term solutions, valid for nearly all eccentricities and inclinations, and for all commensurability ratios. The method allows the inclusion of all zonal and tesseral harmonics of a nonspherical planet.We present here an application of the method to a synchronous satellite includingonly theJ 2 andJ 22 harmonics. Global, long-term solutions for this problem are given for arbitrary values of eccentricity, argument of perigee and inclination.  相似文献   

7.
This paper provides a study of the stable and unstable regions around the smaller primary in the framework of the spatial elliptic restricted three-body problem. The definitions and methods used to determine stable and unstable regions are extended to three dimensions. New results concerning the stable and unstable regions around Mercury are obtained in the Sun–Mercury system.  相似文献   

8.
We say that a planet is Earth-like if the coefficient of the second order zonal harmonic dominates all other coefficients in the gravity field. This paper concerns the zonal problem for satellites around an Earth-like planet, all other perturbations excluded. The potential contains all zonal coefficientsJ 2 throughJ 9. The model problem is averaged over the mean anomaly by a Lie transformation to the second order; we produce the resulting Hamiltonian as a Fourier series in the argument of perigee whose coefficients are algebraic functions of the eccentricity — not truncated power series. We then proceed to a global exploration of the equilibria in the averaged problem. These singularities which aerospace engineers know by the name of frozen orbits are located by solving the equilibria equations in two ways, (1) analytically in the neighborhood of either the zero eccentricity or the critical inclination, and (2) numerically by a Newton-Raphson iteration applied to an approximate position read from the color map of the phase flow. The analytical solutions we supply in full to assist space engineers in designing survey missions. We pay special attention to the manner in which additional zonal coefficients affect the evolution of bifurcations we had traced earlier in the main problem (J 2 only). In particular, we examine the manner in which the odd zonalJ 3 breaks the discrete symmetry inherent to the even zonal problem. In the even case, we find that Vinti's problem (J 4+J 2 2 =0) presents a degeneracy in the form of non-isolated equilibria; we surmise that the degeneracy is a reflection of the fact that Vinti's problem is separable. By numerical continuation we have discovered three families of frozen orbits in the full zonal problem under consideration; (1) a family of stable equilibria starting from the equatorial plane and tending to the critical inclination; (2) an unstable family arising from the bifurcation at the critical inclination; (3) a stable family also arising from that bifurcation and terminating with a polar orbit. Except in the neighborhood of the critical inclination, orbits in the stable families have very small eccentricities, and are thus well suited for survey missions.  相似文献   

9.
10.
This paper describes variations in the insolation on Mercury resulting from fluctuations of the orbital eccentricity (0.11≤e≤0.24) of the planet. Equations for the instantaneous and the daily insolation are briefly discussed and several numerical examples are given illustrating the sensitivity of the solar radiation to changes ine. Special attention is paid to the behavior of the solar radiation distribution curves near sunrise and sunset which at the warm pole of Mercury (longitudes ±90°) occur as the planet goes through perihelion. It has been found that for eccentricities larger than about 0.194 there exists two permanent thermal bulges on opposite sides of the Mercurian surface that alternately point to the Sun at every perihelion passage. The critical value ofe past which the Sun shortly sets after perihelion is near 0.213.  相似文献   

11.
12.
Jack Wisdom 《Icarus》2008,193(2):637-640
Expressions for tidal dissipation in a body in synchronous rotation at arbitrary orbital eccentricity and obliquity are derived. The rate of tidal dissipation for a synchronously rotating body is compared to that in a body in asymptotic nonsynchronous rotation.  相似文献   

13.
Wetherill GW  Stewart GR 《Icarus》1993,106(1):190-209
An earlier investigation of the formation of approximately 10(26) g planetary embryos from much smaller planetesimals (G.W. Wetherill and G.R. Stewart 1989, Icarus 77, 350-357) has been extended to include the effects of collisional fragmentation, the low relative velocity regime in which the effects due to solar gravity are important, and independent perturbations of eccentricity and inclination. In agreement with this earlier work, it if found that at 1 AU runaway growth occurs on a approximately 10(-5)-year time scale as a consequence of equipartition of energy between large and small planetesimals. It is now seen that the runaway is initiated after approximately 10(4) years, when the relative velocities of the larger bodies temporarily fall into the low-velocity regime, lowering their inclinations and increasing their gravitational capture rates. After approximately 2 X 10(4) years, relative velocities between most bodies emerge from the low-velocity regime, and these higher velocities tend to inhibit further runaway growth. This rapid runaway growth is self-regulated, however, by these same higher velocities, causing fragmentation of the smaller bodies. The velocities of the collision fragments are reduced by gas drag, facilitating their capture by the growing runaway embryos. Variations in which different fragmentation models are used, or long-range forces between nonrunaway bodies are absent, give similar results. When fragmentation is not included, the time scale for growth increases to approximately 3 X 10(5) years as a result of loss of the self-regulating process described above.  相似文献   

14.
We study the effect of eccentricity and inclination on small amplitude librations around the equilibrium points L 4 and L 5 in the circular restricted three-body problem. We show that the effective libration centres can be displaced appreciably from the equilateral configuration. The secular extrema of the eccentricity as a function of the argument of pericentre are shifted by ∼25 ° This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
16.
In this paper we consider the analytical foundations of numerical applications of the symmetric difference quotient for orbits correction. From these considerations it follows that the better results obtained in numerical calculations of values of derivatives at point, obtained by replacing the ordinary difference quotient with the symmetric difference quotient, have not been obtained fortuitandy.  相似文献   

17.
18.
The Kelvin-Helmholtz instability is believed to be an important means for the transfer of energy, plasma, and momentum from the solar wind into planetary magnetospheres, with in situ measurements reported from Earth, Saturn, and Venus. During the first MESSENGER flyby of Mercury, three periodic rotations were observed in the magnetic field data possibly related to a Kelvin-Helmholtz wave on the dusk side magnetopause. We present an analysis of the event, along with comparisons to previous Kelvin-Helmholtz observations and an investigation of what influence finite ion gyro radius effects, believed to be of importance in the Hermean magnetosphere, may have on the instability. The wave signature does not correspond to that of typical Kelvin-Helmholtz events, and the magnetopause direction does not show any signs of major deviation from the unperturbed case. There is thus no indication of any high amplitude surface waves. On the other hand, the wave period corresponds to that expected for a Kelvin-Helmholtz wave, and as the dusk side is shown to be more stable than the dawn side, we judge the observed waves not to be fully developed Kelvin-Helmholtz waves, but they may be an initial perturbation that could cause Kelvin-Helmholtz waves further down the tail.  相似文献   

19.
We study the dynamics of 3:1 resonant motion for planetary systems with two planets, based on the model of the general planar three body problem. The exact mean motion resonance corresponds to periodic motion (in a rotating frame) and the basic families of symmetric and asymmetric periodic orbits are computed. Four symmetric families bifurcate from the family of circular orbits of the two planets. Asymmetric families bifurcate from the symmetric families, at the critical points, where the stability character changes. There exist also asymmetric families that are independent of the above mentioned families. Bounded librations exist close to the stable periodic orbits. Therefore, such periodic orbits (symmetric or asymmetric) determine the possible stable configurations of a 3:1 resonant planetary system, even if the orbits of the two planets intersect. For the masses of the system 55Cnc most of the periodic orbits are unstable and they are associated with chaotic motion. There exist however stable symmetric and asymmetric orbits, corresponding to regular trajectories along which the critical angles librate. The 55Cnc extra-solar system is located in a stable domain of the phase space, centered at an asymmetric periodic orbit.  相似文献   

20.
Following some ideas, developed by Woltjer (1928), Message (1989), Yokoyama (1988, 1989) and Duriez (1990) an expansion of the disturbing function is given for high values of the eccentricity and large amplitude of libration. The classical expansion can be obtained as a particular case of the present model. Several asteroids with high eccentricity and large amplitude of libration are tested and the results are much better than those obtained from the classical theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号