首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An aquifer coupled cavity flow heat exchanger system (ACCFHES) was designed using underground aquifer water for the heating as well as cooling of a composite climatic greenhouse. The performance of ACCFHES was experimentally evaluated for a full winter and a summer season. The ACCFHES makes use of constant temperature aquifer water (24 °C) available at an agricultural field through an irrigation tube well for heating in winter nights and cooling in summer days. The results showed that the average greenhouse room air temperature was maintained 7–9 °C above the outside air during extreme winter nights and 6–7 °C below the outside air in extreme summer days, and temperature fluctuations inside the greenhouse also decreased daily. The average relative humidity (RH) inside the greenhouse also decreased by 10–12% in the winter and increased by more than double in the extreme summer conditions as compared to the outside conditions. A comparison of economic feasibility of the ACCFHES coupled greenhouse was also conducted with conventional greenhouse and open field condition based on the yield of Capsicum annum. The ACCFHES was also compared economically with other existing heating/cooling technologies such as earth-to-air heat exchanger system (EAHES), ground air collector, evaporative cooling using foggers and fan & pad system in terms of net present worth (NPW) and pay back period. It was observed that the NPW of the ACCFHES coupled greenhouse was much higher as compared to the conventional greenhouse and open field condition. The payback period of the ACCFHES coupled greenhouse was the lowest among all other existing heating/cooling systems.  相似文献   

2.
V.P. Sethi  S.K. Sharma 《Solar Energy》2007,81(12):1447-1459
This paper reviews the available worldwide cooling technologies for agricultural greenhouses and discusses the representative applications of each technology. Relevant information about the system characteristics, application and performance of the existing greenhouse cooling technologies such as ventilation (natural and forced), shading/reflection, evaporative cooling (fan-pad, mist/fog and roof cooling) and composite systems (earth-to-air heat exchanger system and aquifer coupled cavity flow heat exchanger system) is collected and presented in detail. As per the collected information, the pros and cons of each technology are also discussed. Finally, some important conclusions are drawn (based on the collected information) regarding the performance of each discussed system.  相似文献   

3.
Solar absorption cooling systems are viewed as potential alternatives to fossil-fuel-based conventional cooling systems. This view is investigated in this paper from the point of view of the energy balance of solar absorption and conventional systems. The paper investigates the primary energy needs of three cooling systems; dry and wet cooled vapour compression systems and wet cooled solar absorption. The sources of energy demand in the three systems are identified and their primary energy needs determined. The paper, then, investigates the conditions under which the energy inputs to the solar system breaks even with the other two systems. The investigation is conducted with particular reference to the operational and environmental conditions in Kuwait.  相似文献   

4.
A low-energy house located in Halifax, Canada, was monitored for a year using a computerized data acquisition system. Data on indoor and outdoor temperatures, relative humidities, and power consumption were collected for a whole year. The results of the analysis of cooling season data are presented. It was found that indoor temperature variations in the house were generally small, indicating a high level of comfort. The cooling load, and the cooling energy requirement of the house were low owing to the high level of insulation, and could further be reduced by increasing the thermostat setting. This however would reduce the comfort level in the house. Temperature set-up during unoccupied periods did not reduce daily cooling energy requirement, and addition of an economizer control would not be feasible owing to the small magnitude of potential savings.  相似文献   

5.
A low-energy house located in Halifax, Canada was monitored for a year using a computerized data acquisition system. Data on indoor and outdoor temperatures, relative humidities, and power consumption were collected for a whole year. The results of the analysis of the cooling season data from the heat pump system are presented in this paper. The analysis of the data indicated that a large part of the latent cooling done by the heat pump was subsequently converted to sensible cooling as a result of the evaporation of the condensate from the indoor coil. It was found that 25% of the total sensible cooling supplied to the house during the cooling season was as a result of the conversion of latent cooling to sensible cooling. This phenomenon has important implications in design, operation, and modelling of heat pumps and cooling systems with direct expansion coils. The seasonal EER of cooling was 1.95, and the total power consumption was 1194 kWh with a corresponding cost of Can $84. It was also found that temperature set-up during unoccupied periods did not result in any savings in the daily power consumption.  相似文献   

6.
鹿世化 《节能》2004,(12):11-13
浅层地下水作为冷源应用于地板供冷来改善建筑内部的人工环境 ,一方面是对国家提倡建筑节能的大力支持 ;另一方面也是可再生能源研究和利用的新的有益探索。基于以上两点 ,本文介绍了地板供冷和地下水与地板供冷两者结合使用的优点。  相似文献   

7.
London’s urban heat island increases the mean air temperature which affects the demand for heating and cooling buildings. Measured air temperature data have been used as input to a building energy simulation computer program to assess the heating and cooling load of a typical air-conditioned office building positioned at 24 different locations within the London Heat Island. It is found that the urban cooling load is up to 25% higher than the rural load over the year, and the annual heating load is reduced by 22%. The effect of raised temperature and urban context are assessed separately, and the sensitivity of the net impact to the internal gains in a building is determined. For the estimation of peak cooling demand, we propose hourly temperature corrections based on radial distance from London’s centre to be applied to standard published temperatures for the region. For more detailed investigations over the cooling season a range of models is available. These are reviewed in this paper and we describe preliminary results of an Artificial Neural Network (ANN) model that predicts location specific hourly temperatures for London, taking into account radial distance from central London, hourly air temperature measured at the meteorological station and associated synoptic weather data.  相似文献   

8.
Integrated Energy Systems (IES), as technology that use thermal activated components to recover waste heat, are energy systems that offer key solution to global warming and energy security through high overall energy efficiency and better fuel use. Combined Cooling, Heating, and Power (CCHP) Systems are IES that use recovered thermal energy from the prime mover to produce heating and cooling for the building. The CCHP operational strategy is critical and it has to be considered in a well designed system since it defines the ultimate goal for the benefits expected from the system. One of the most common operational strategies is the cost-oriented strategy, which allows the system to operate at the lowest cost. A primary energy strategy (PES) optimizes energy consumption instead of cost. However, as a result of the worldwide concern about global warming, projects that target reduction of greenhouse gas (GHG) emissions have gained a lot of interest. Therefore, for a CCHP system, an emission strategy (ES) would be an operational strategy oriented to minimize emission of pollutants. In this study, the use of an ES is proposed for CCHP systems targeted to reduce emission of pollutants. The primary energy consumption (PEC) reduction and carbon dioxide (CO2) emission reduction obtained using the proposed ES are compared with results obtained from the use of a PES. Results show that lower emission of CO2 is achieved with the ES when compared with the PES, which prove the advantage of the ES for the design of CCHP systems targeted to emissions reduction.  相似文献   

9.
A system is being designed, using solar energy in combination with Aquifer Thermal Energy Storage (ATES), that will conserve a major part of the oil and electricity used for heating or cooling the Cukurova University, Balcali Hospital in Adana, Turkey. The general objective of the system is to provide heating and cooling to the hospital by storing solar heat underground in summer and cold in winter. As the main source of cold energy, ventilation air at the hospital and surface water from the nearby Seyhan Lake will be used.  相似文献   

10.
Simulation of solar-powered absorption cooling system   总被引:1,自引:0,他引:1  
With developing technology and the rapid increase in world population, the demand for energy is ever increasing. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling. In this study, a solar-powered, single stage, absorption cooling system, using a water–lithium bromide solution, is simulated. A modular computer program has been developed for the absorption system to simulate various cycle configurations and solar energy parameters for Antalya, Turkey. So, the effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling components are studied. In addition, reference temperatures which are the minimum allowable hot water inlet temperatures are determined and their effect on the fraction of the total load met by non–purchased energy (FNP) and the coefficient of performance are researched. Also, the effects of the collector type and storage tank mass are investigated in detail.  相似文献   

11.
The European Centre for Public Law in Legraina near Athens in Greece is heated and cooled by a combined solar and geothermal system. The main components of the system are a saline groundwater supplying well, water storage tank for 6 h autonomy, inverter for regulating geothermal flow, heat exchanger, two electrical water source heat pumps placed in cascade, fan coils, air handling units, as well as solar air collectors for air preheating in winter. In addition, hot water is supplied to the building hostel by solar water heaters. Monitoring of the energy system during heating showed excellent energy efficiency and performance.  相似文献   

12.
A numerical model for studying the evaporative cooling processes that take place in a new type of cooling tower has been developed. In contrast to conventional cooling towers, this new device called Hydrosolar Roof presents lower droplet fall and uses renewable energy instead of fans to generate the air mass flow within the tower. The numerical model developed to analyse its performance is based on computational flow dynamics for the two-phase flow of humid air and water droplets. The Eulerian approach is used for the gas flow phase and the Lagrangian approach for the water droplet flow phase, with two-way coupling between both phases. Experimental results from a full-scale prototype in real conditions have been used for validation. The main results of this study show the strong influence of the average water drop size on efficiency of the system and reveal the effect of other variables like wet bulb temperature, water mass flow to air mass flow ratio and temperature gap between water inlet temperature and wet bulb temperature. Nondimensional numerical correlation of efficiency as a function of these significant parameters has been calculated.  相似文献   

13.
This paper considers the design of cooling systems in the context of piping costs, exchanger costs, pumping costs and its hydraulic and thermal performance. A methodology for designing coolers in the context of both process needs and cooling water system behaviour is introduced. It is recognised that cooling systems need to be flexible. One way of ensuring this is to design a system for the most demanding load and then use bypasses to control performance under reduced load.The hydraulic modelling is based on new formulations of flow resistance for pipes, pipe fittings and equipment items. By using volumetric flow rate rather than velocity as the prime variable it becomes possible to construct hydraulic models for cooling water systems quickly. These calculations then provide predictions of water flows to the individual heat exchangers in the cooling water network. Knowledge of these flows is fundamental to both the design of new coolers and the prediction of the thermal performance of exchangers of known geometry. Previous studies have ignored this aspect of design.  相似文献   

14.
A solar ejector cooling system using refrigerant R134a in the Athens area   总被引:2,自引:0,他引:2  
This paper describes the performance of an ejector cooling system driven by solar energy and R134a as working fluid. The system operating in conjunction with intermediate temperature solar collector in Athens, is predicted along the 5 months (May–September). The operation of the system and the related thermodynamics are simulated by suitable computer codes and the required local climatologically data are determined by statistical processing over a considerable number of years. It was fount that the COP of ejector cooling system varied from 0.035 to 0.199 when the operation conditions were: generator temperature (82–92 °C), condenser temperature (32–40 °C) and evaporator temperature (−10–0 °C). For solar cooling application the COP of overall system varied from 0.014 to 0.101 with the same operation conditions and total solar radiation (536–838 W/m2) in July.  相似文献   

15.
太阳能制冷系统的研究   总被引:9,自引:0,他引:9  
介绍了不同形式的太阳能吸收式和吸附式制冷系统的工作原理及工作特性,分析了当今以吸收式和吸附式为主流的太阳能制冷系统的优缺点,提出太阳能制冷系统真正达到可行性及实用性所需改善的环节:  相似文献   

16.
This study introduces a review for the potential cooling systems which uses carbon materials as an adsorbent. Also, the adsorption carbon pairs (pairs where the carbon is the adsorbent) which is still under researches were reviewed. The maximum COP (coefficient of performance) of the cooling systems was 0.8 for activated carbon/ethanol pair. The study concluded that the performances of the potential adsorption cooling systems using carbon are still not satisfied. It was concluded that there is an opportunity for the adsorption carbon pairs to introduce a new cooling system with a promising performances.  相似文献   

17.
Thermoelectric power plants require significant quantities of water, primarily for the purpose of cooling. Water also is becoming critically important for low-carbon power generation. To reduce greenhouse gas emissions from pulverized coal (PC) power plants, post-combustion carbon capture and storage (CCS) systems are receiving considerable attention. However, current CO2 capture systems require a significant amount of cooling. This paper evaluates and quantifies the plant-level performance and cost of different cooling technologies for PC power plants with and without CO2 capture. Included are recirculating systems with wet cooling towers and air-cooled condensers (ACCs) for dry cooling. We examine a range of key factors affecting cooling system performance, cost and plant water use, including the plant steam cycle design, coal type, carbon capture system design, and local ambient conditions. Options for reducing power plant water consumption also are presented.  相似文献   

18.
This paper presents the online test and evaluation of the performance of five practical control strategies (fixed set-point control method, fixed approach control method, two near optimal strategies and one optimal strategy) for building cooling water systems to identify the best strategy for future field validation. All of these strategies were tested and evaluated in a simulated virtual environment similar to the situation when they are actually implemented in practice. A virtual building system representing the real building and its central chilling system was developed and used to test the operational performance of the system controlled by different strategies. The packages of each control strategy are separately computed by the application program of Matlab, as the control optimizers to identify the necessary control settings for the given condition based on the collected operation data. The data exchanger between the virtual building system and the control optimizer was managed by a software platform through a communication interface. The results showed that the optimal control strategy is more energy efficient and cost effective than the other strategies, and its computational cost is manageable and can satisfy the requirements of practical applications. This strategy is being implemented in a super high-rise building for field validation.  相似文献   

19.
In subtropical Hong Kong, solar heat gain via glazing contributes to a significant proportion of the building envelope cooling load. The principal fenestration design includes eliminating direct sunlight and reducing cooling requirements. Daylighting is an effective approach to allow a flexible building façade design strategy, and to enhance an energy-efficient and green building development. This paper studies the lighting and cooling energy performances for a fully air-conditioned open-plan office when solar control films together with daylight-linked lighting controls are being used. Measurements were undertaken at two stages including the electricity expenditures for the office using photoelectric dimming controls only (first stage) and together with the solar control film coatings on the windows (second stage). Electric lighting and cooling energy consumption, transmitted daylight illuminance and solar radiation were systematically recorded and analysed. The measured data were also used for conducting and validating the building energy simulations. The findings showed that the solar film coatings coupled with lighting dimming controls cut down 21.2% electric lighting and 6.9% cooling energy consumption for the open-plan office.  相似文献   

20.
This study is a contribution to European projects Pascool/Joule II and Altener/Sink that deals with feasibility of passive cooling systems in Europe. The first aim of this work was to define a design methodology to evaluate natural cooling potential according to the climatic quantification criteria of the site, the cooling system performance, and comfort criteria defined by the couple of temperature and relative humidity set points. A simplified approach, based on climatic potential criteria as theoretical cooling potential index, the available potential index, the cooling need index, and the natural cooling normalized capacity, was developed. It was applied to 105 European sites for different types of evaporative cooling systems (direct and indirect), and for various temperature and relative humidity set points. During the second stage, a refined approach taking into account building characteristics and the cooling system performance, was developed. This method is based on the integration of numerical models of passive cooling systems in a thermal building software in order to consider interaction phenomena between cooling system and building. Application of this approach to one building has been done in order to assess energy consumption gain achieved by using passive cooling systems. These two complementary approaches provide helpful information dealing with the feasibility of a passive cooling technique based on comfort and energy saving criteria. They could be used by architects and building designers as helpful decision making tools during the different stages of building design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号