首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A novel hollow‐fiber liquid‐phase microextraction based on oil‐in‐salt was proposed and introduced for the simultaneous extraction and enrichment of the main active compounds of hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin in a formula of Zi‐Cao‐Cheng‐Qi decoction and the single herb, Fructus Aurantii Immaturus , Cortex Magnoliae Officinalis , Radix et Rhizoma , and Lithospermum erythrorhizon , composing the formula prior to their analysis by high‐performance liquid chromatography. The results obtained by the proposed procedure were compared with those obtained by conventional hollow‐fiber liquid‐phase microextraction, and the proposed procedure mechanism was described. In the procedure, a hollow‐fiber segment was first immersed in organic solvent to fill the solvent in the fiber lumen and wall pore, and then the fiber was again immersed into sodium chloride solution to cover a thin salt membrane on the fiber wall pore filling organic solvent. Under the optimum conditions, the enrichment factors of the analytes were 0.6–109.4, linearities were 0.002–12 μg/mL with r 2 ≥ 0.9950, detection limits were 0.6–12 ng/mL, respectively. The results showed that oil‐in‐salt hollow‐fiber liquid‐phase microextraction is a simple and effective sample pretreatment procedure and suitable for the simultaneous extraction and concentration of trace‐level active compounds in traditional Chinese medicine.  相似文献   

2.
A simple, environmentally friendly, and efficient method, based on hollow‐fiber‐supported liquid membrane microextraction, followed by high‐performance liquid chromatography has been developed for the extraction and determination of amlodipine (AML) and atorvastatin (ATO) in water and urine samples. The AML in two‐phase hollow‐fiber liquid microextraction is extracted from 24.0 mL of the aqueous sample into an organic phase with microliter volume located inside the pores and lumen of a polypropylene hollow fiber as acceptor phase, but the ATO in three‐phase hollow‐fiber liquid microextraction is extracted from aqueous donor phase to organic phase and then back‐extracted to the aqueous acceptor phase, which can be directly injected into the high‐performance liquid chromatograph for analysis. The preconcentration factors in a range of 34–135 were obtained under the optimum conditions. The calibration curves were linear (R2 ≥ 0.990) in the concentration range of 2.0–200 μg/L for AML and 5.0–200 μg/L for ATO. The limits of detection for AML and ATO were 0.5 and 2.0 μg/L, respectively. Tap water and human urine samples were successfully analyzed for the existence of AML and ATO using the proposed methods.  相似文献   

3.
A novel three‐phase hollow fiber liquid‐phase microextraction was developed based on reverse micelle as extraction solvent and acceptor phase, and compared with conventional two‐phase hollow fiber liquid‐phase microextraction. Both procedures were used in the extraction and concentration of four cinnamic acids (caffeic acid, p‐hydroxycinnamic acid, ferulic acid, and cinnamic acid) in traditional Chinese medicines prior to high‐performance liquid chromatography analysis. Parameters affecting the two procedures were investigated and optimized to obtain the optimum enrichment factors. The mechanism of the developed procedure was explored and elucidated by comparison with conventional two‐phase hollow fiber liquid‐phase microextraction. Under the optimized conditions, the analytes’ enrichment factors were between 50 and 118 for the proposed procedure, and 31–96 for conventional two‐phase mode. Satisfactory linear ranges (r2 ≥ 0.99), detection limits (0.1–0.6 ng/mL), precisions (<9.2%), and accuracies (recoveries: 80–123.1%) were observed for the two procedures. The results showed that the enrichment capacity of the proposed procedure for the cinnamic acids is better than that of conventional two‐phase procedure, and both are eco‐friendly, simple, and effective for the enrichment and detection of cinnamic acids in traditional Chinese medicines.  相似文献   

4.
Two different modes of three‐phase hollow fiber liquid‐phase microextraction were studied for the extraction of two herbicides, bensulfuron‐methyl and linuron. In these two modes, the acceptor phases in the lumen of the hollow fiber were aqueous and organic solvents. The extraction and determination were performed using an automated hollow fiber microextraction instrument followed by high‐performance liquid chromatography. For both three‐phase hollow fiber liquid‐phase microextraction modes, the effect of the main parameters on the extraction efficiency were investigated and optimized by central composite design. Under optimal conditions, both modes showed good linearity and repeatability, but the three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents has a better extraction efficiency and figures of merit. The calibration curves for three‐phase hollow fiber liquid‐phase microextraction with an organic acceptor phase were linear in the range of 0.3–200 and 0.1–150 μg/L and the limits of detection were 0.1 and 0.06 μg/L for bensulfuron‐methyl and linuron, respectively. For the conventional three‐phase hollow fiber liquid‐phase microextraction, the calibration curves were linear in the range of 3.0–250 and 15–400 μg/L and LODs were 1.0 and 5.0 μg/L for bensulfuron‐methyl and linuron, respectively. The real sample analysis was carried out by three‐phase hollow fiber liquid phase microextraction based on two immiscible organic solvents because of its more favorable characteristics.  相似文献   

5.
In this study, two‐phase hollow‐fiber liquid‐phase microextraction and three‐phase hollow‐fiber liquid‐phase microextraction based on two immiscible organic solvents were compared for extraction of oxazepam and Lorazepam. Separations were performed on a liquid chromatography with mass spectrometry instrument. Under optimal conditions, three‐phase hollow‐fiber liquid‐phase microextraction based on two immiscible organic solvents has a better extraction efficiency. In a urine sample, for three‐phase hollow fiber liquid‐phase microextraction based on two immiscible organic solvents, the calibration curves were found to be linear in the range of 0.6–200 and 0.9–200 μg L?1 and the limits of detection were 0.2 and 0.3 μg L?1 for oxazepam and lorazepam, respectively. For two‐phase hollow fiber liquid‐phase microextraction, the calibration curves were found to be linear in the range of 1–200 and 1.5–200 μg L?1 and the limits of detection were 0.3 and 0.5 μg L?1 for oxazepam and lorazepam, respectively. In a urine sample, for three‐phase hollow‐fiber‐based liquid‐phase microextraction based on two immiscible organic solvents, relative standard deviations in the range of 4.2–4.5% and preconcentration factors in the range of 70–180 were obtained for oxazepam and lorazepam, respectively. Also for the two‐phase hollow‐fiber liquid‐phase microextraction, preconcentration factors in the range of 101–257 were obtained for oxazepam and lorazepam, respectively.  相似文献   

6.
A three‐phase hollow‐fiber liquid‐phase microextraction based on deep eutectic solvent as acceptor phase was developed and coupled with high‐performance capillary electrophoresis for the simultaneous extraction, enrichment, and determination of main active compounds (hesperidin, honokiol, shikonin, magnolol, emodin, and β,β′‐dimethylacrylshikonin) in a traditional Chinese medicinal formula. In this procedure, two hollow fibers, impregnated with n‐heptanol/n‐nonanol (7:3, v/v) mixture in wall pores as the extraction phase and a combination (9:1, v/v) of methyltrioctylammonium chloride/glycerol (1:3, n/n) and methanol in lumen as the acceptor phase, were immersed in the aqueous sample phase. The target analytes in the sample solution were first extracted through the organic phase, and further back‐extracted to the acceptor phase during the stirring process. Important extraction parameters such as types and composition of extraction solvent and deep eutectic solvent, sample phase pH, stirring rate, and extraction time were investigated and optimized. Under the optimal conditions, detection limits were 0.3–0.8 ng/mL with enrichment factors of 6–114 for the analytes and linearities of 0.001–13 μg/mL (r2 ≥ 0.9901). The developed method was successfully applied to the simultaneous extraction and concentration of the main active compounds in a formula of Zi‐Cao‐Cheng‐Qi decoction with the major advantages of convenience, effectiveness, and environmentally friendliness.  相似文献   

7.
The analysis of plant growth regulators presents a challenge due to their trace quantities and complex matrices. A novel, simple, and effective analytical method for the determination of three trace acidic plant growth regulators in Anoectochilus roxburghii (Wall.) Lindl was developed to address this issue. Three‐phase hollow fiber liquid‐phase microextraction combined with high‐performance liquid chromatography was applied for the enrichment, purification, and determination of three acidic plant growth regulators, namely, indole‐3‐acetic‐acid, indole‐3‐butyric‐acid, and (+)‐abscisic acid. The factors affecting extraction performance, including extractant species, pH of donor and acceptor phases, salt addition dosage, extraction time, temperature, and stirring rate, were investigated and optimized. Under optimum conditions, the proposed method provided good linearity (R2, 0.9994–0.9999), low limit of detection (0.038–0.12 ng/mL), and acceptable relative recoveries (56.7–117.6%). The enrichment factors were between 153 and 328. The developed method was successfully applied to the enrichment and determination of plant growth regulators in Anoectochilus roxburghii (Wall.) Lindl and exhibited increased purification capacity, higher sensitivity, and decreased organic solvent consumption compared with conventional sample preparation methods. This method may provide a testing platform for the monitoring of plant growth regulator residues, ensuring the safe and effective use of traditional Chinese medicine.  相似文献   

8.
A novel design of hollow‐fiber liquid‐phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol–gel technique, was developed for the pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid‐ and liquid‐phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01–500 ng/mL and the limits of detection were in the range of 0.007–1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85–92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples.  相似文献   

9.
A three‐phase hollow fiber liquid‐phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1‐octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 μL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H3PO4, pH 3.0; organic solvent, 1‐octanol; acceptor solution, 40 μL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05–0.30 mg/L with r2>0.9900 and LODs were in the range of 0.01–0.04 mg/L with RSDs of 1.25–2.32%. Excellent enrichment factors of up to 398‐folds were obtained. It was found that the partition coefficient (Ka/d) values were high for 2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2,4‐dinitrophenol and 2,6‐dinitrophenol and that the individual partition coefficients (Korg/d and Ka/org) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.  相似文献   

10.
A new and fast sample preparation technique based on three‐phase hollow fiber liquid‐phase microextraction with a magnetofluid was developed and successfully used to quantify the aristolochic acid I (AA‐I) and AA‐II in plasma after oral administration of Caulis akebiae extract. Analysis was accomplished by reversed‐phase high‐performance liquid chromatography with fluorescence detection. Parameters that affect the hollow fiber liquid‐phase microextraction processes, such as the solvent type, pH of donor and acceptor phases, content of magnetofluid, salt content, stirring speed, hollow fiber length, extraction temperature, and extraction time, were investigated and optimized. Under the optimized conditions, the preconcentration factors for AA‐I and AA‐II were >627. The calibration curve for two AAs was linear in the range of 0.1–10 ng/mL with the correlation coefficients >0.9997. The intraday and interday precision was <5.71% and the LODs were 11 pg/mL for AA‐I and 13 pg/mL for AA‐II (S/N = 3). The separation and determination of the two AAs in plasma after oral administration of C. akebiae extract were completed by the validated method.  相似文献   

11.
The speciation of chromium(VI) and chromium(III) was investigated by using hollow fiber liquid‐phase microextraction based on two immiscible organic solvents followed by high performance liquid chromatography with ultraviolet detection. In this method, chromium(VI) and chromium(III) reacted with ammonium pyrrolidine dithiocarbamate to produce hydrophobic complexes. Subsequently, the complexes were first extracted into a thin layer of organic solvent (n‐dodecane) present in the pores of a porous hollow fiber, and then into a μL volume of an organic acceptor (methanol) located inside the lumen of the hollow fiber. Then, the extracting organic phase was injected into the separation column of the high‐performance liquid chromatograph for the analysis of both chromium species. Effective parameters on extraction were optimized using one‐variable‐at‐a‐time method and central composite design. Under optimized conditions, a linear range of 0.25–100 and 0.5–100 μg/L (R 2 > 0.998), the limits of detection of (S/N = 3) 0.08 and 0.1 μg/L and a preconcentration factor of 625 and 556 were achieved for chromium(VI) and chromium(III), respectively. The method was successfully applied to the speciation and determination of chromium species in different water samples and satisfactory results were obtained.  相似文献   

12.
This paper reports the applicability of two‐phase and three‐phase hollow fiber based liquid‐phase microextraction (HF‐LPME) for the extraction of hydrochlorothiazide (HYD) and triamterene (TRM) from human urine. The HYD in two‐phase HF‐LPME is extracted from 24 mL of the aqueous sample into an organic phase with microliter volume located inside the pores and lumen of a polypropylene hollow fiber as acceptor phase, but the TRM in three‐phase HF‐LPME is extracted from aqueous donor phase to organic phase and then back‐extracted to the aqueous acceptor phase, which can be directly injected into HPLC for analysis. Under optimized conditions preconcentration factors of HYD and TRM were obtained as 128 and 239, respectively. The calibration curves were linear (R2 ≥ 0.995) in the concentration range of 1.0–100 µg/L for HYD and 2.0–100 µg/L for TRM. The limits of detection for HYD and TRM were 0.5 µg/L. The intra‐day and inter‐day RSD based on four replicates were obtained as ≤5.8 and ≤9.3%, respectively. The methods were successfully applied for determining the concentration of the drugs in urine samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Polypropylene hollow fibers as the adsorbent were directly filled into a polyetheretherketone tube for in‐tube solid‐phase microextraction. The surface properties of hollow fibers were characterized by a scanning electron microscope. Combined with high performance liquid chromatography, the extraction tube showed good extraction performance for five environmental estrogen hormones. To achieve high analytical sensitivity, four important factors containing sampling volume, sampling rate, content of organic solvent in sample, and desorption time were investigated. Under the optimum conditions, an online analysis method was established with wide linear range (0.03–20 µg/L), good correlation coefficients (≥0.9998), low limits of detection (0.01–0.05 µg/L), low limits of quantitation (0.03–0.16 µg/L), and high enrichment factors (1087–2738). Relative standard deviations (n = 3) for intraday (≤3.6%) and interday (≤5.1%) tests proved the stable extraction performance of the material. Durability and chemical stability of the extraction tube were also investigated, relative standard deviations of all analytes were less than 5.8% (n = 3), demonstrating the satisfactory stability. Finally, the method was successfully applied to detect estrogens in real samples.  相似文献   

14.
A novel liquid–liquid microextraction method, namely, solvent‐vapor‐assisted liquid–liquid microextraction for the determination of dimethyl phthalate, diethyl phthalate, dibutyl phthalate and bis(2‐ethylhexyl) phthalate in the aqueous samples using gas chromatography with mass spectrometry was developed. In the proposed method, extracting solvent was heated, and solvent vapor as the extracting phase was injected into the sample solution. As a result of the low temperature of the sample solution and higher density of the extracting phase than the aqueous medium, solvent vapor was condensed and an organic‐phase drop formed in the bottom of sample tube. Because of the gas status of the extracting solvent, the surface area between the extracting solvent and the aqueous sample was remarkably high. Under the optimized conditions, tetrachloride carbon was used as an extracting solvent. The method shows high coefficient of determination (R 2) values in the range of 0.5–200 and 1.0–200 ng/mL for the target analytes. Enrichment factors and limits of detection for the studied phthalates are obtained in the ranges of 2800–3000 and 0.15–0.3 ng/mL, respectively. Recoveries and relative standard deviations were in the range of 80.0–100.0 and 2.2–7.8%, respectively. The proposed method successfully used for analysis of several aqueous samples.  相似文献   

15.
In this study, a simple and accurate sample preparation method based on dispersive solid‐phase extraction and dispersive liquid‐liquid microextraction has been developed for the determination of seven novel succinate dehydrogenase inhibitor fungicides (isopyrazam, fluopyram, pydiflumetofen, boscalid, penthiopyrad, fluxapyroxad, and thifluzamide) in watermelon. The watermelon samples were extracted with acetonitrile, cleaned up by dispersive solid‐phase extraction procedure using primary secondary amine, extracted and concentrated by the dispersive liquid‐liquid microextraction procedure with 1,1,2,2‐tetrachloroethane, and then analyzed by ultra high performance liquid chromatography with tandem mass spectrometry. The main experimental factors affecting the performance of dispersive solid‐phase extraction and dispersive liquid‐liquid microextraction procedure on extraction efficiency were investigated. The proposed method had a good linearity in the range of 0.1–100 µg/kg with correlation coefficients (r) of 0.9979–0.9999. The limit of quantification of seven fungicides was 0.1 µg/kg in the method. The fortified recoveries of seven succinate dehydrogenase inhibitor fungicides at three levels ranged from 72.0 to 111.6% with relative standard deviations of 3.4–14.1% (n = 5). The proposed method was successfully used for the rapid determination of seven succinate dehydrogenase inhibitor fungicides in watermelon.  相似文献   

16.
Switchable‐hydrophilicity solvent liquid‐liquid microextraction and dispersive liquid‐liquid microextraction were compared for the extraction of piperine from Piper nigrum L. prior to its analysis by using high‐performance liquid chromatography with UV detection. Under optimum conditions, limits of detection and quantitation were found as 0.2–0.6 and 0.7–2.0 μg/mg with the two methods, respectively. Calibration graphs showed good linearity with coefficients of determination (R2) higher than 0.9962 and percentage relative standard deviations lower than 6.8%. Both methods were efficiently used for the extraction of piperine from black and white pepper samples from different origins and percentage relative recoveries ranged between 90.0 and 106.0%. The results showed that switchable‐hydrophilicity solvent liquid‐liquid microextraction is a better alternative to dispersive liquid‐liquid microextraction for the routine analysis of piperine in food samples. A novel scaled‐up dispersive liquid‐liquid microextraction method was also proposed for the isolation of piperine providing a yield of 102.9 ± 4.9% and purity higher than 98.0% as revealed by NMR spectroscopy.  相似文献   

17.
A low‐cost and simple cooling‐assisted headspace liquid‐phase microextraction device for the extraction and determination of 2,6,6‐trimethyl‐1,3 cyclohexadiene‐1‐carboxaldehyde (safranal) in Saffron samples, using volatile organic solvents, was fabricated and evaluated. The main part of the cooling‐assisted headspace liquid‐phase microextraction system was a cooling capsule, with a Teflon microcup to hold the extracting organic solvent, which is able to directly cool down the extraction phase while the sample matrix is simultaneously heated. Different experimental factors such as type of organic extraction solvent, sample temperature, extraction solvent temperature, and extraction time were optimized. The optimal conditions were obtained as: extraction solvent, methanol (10 μL); extraction temperature, 60°C; extraction solvent temperature, 0°C; and extraction time, 20 min. Good linearity of the calibration curve (R2 = 0.995) was obtained in the concentration range of 0.01–50.0 μg/mL. The limit of detection was 0.001 μg/mL. The relative standard deviation for 1.0 μg/mL of safranal was 10.7% (n = 6). The proposed cooling‐assisted headspace liquid‐phase microextraction device was coupled (off‐line) to high‐performance liquid chromatography and used for the determination of safranal in Saffron samples. Reasonable agreement was observed between the results of the cooling‐assisted headspace liquid‐phase microextraction high‐performance liquid chromatography method and those obtained by a validated ultrasound‐assisted solvent extraction procedure.  相似文献   

18.
In this study, chitosan‐zinc oxide nanoparticles were used as a sorbent of miniaturized matrix solid‐phase dispersion combined with flotation‐assisted dispersive liquid–liquid microextraction for the simultaneous determination of 13 n‐alkanes such as C8H18 and C20H42 in soil samples. The solid samples were directly blended with the chitosan nanoparticles in the solid‐phase dispersion method. The eluent of solid‐phase dispersion was applied as the dispersive solvent for the following flotation‐assisted dispersive liquid–liquid microextraction for further purification and enrichment of the target compounds prior to gas chromatography with flame ionization detection. Under the optimum conditions, good linearity with correlation coefficients in the range 0.9991 < r2 < 0.9995 and low detection limits between 0.08 to 2.5 ng/g were achieved. The presented procedure combined the advantages of chitosan‐zinc oxide nanoparticles, solid‐phase dispersion and flotation‐assisted dispersive liquid–liquid microextraction, and could be applied for the determination of n‐alkanes in complicated soil samples with acceptable recoveries.  相似文献   

19.
A sensitive method for determining sulfonamides in water was developed and validated through in situ derivatization and hollow‐fiber liquid‐phase microextraction with ultra‐high performance liquid chromatography and fluorescence detection. The target sulfonamides were sulfadiazine, sulfacetamide, sulfamerazine, sulfamethazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethoxazole, and sulfisoxazole. Following in situ derivatization with fluorescamine, three‐phase hollow‐fiber liquid‐phase microextraction with an S 6/2 polypropylene hollow‐fiber membrane was applied automatically using a multipurpose autosampler. Experimental parameters including derivatization time, choice of organic phase, pH of donor and acceptor phase, stirring rate, extraction temperature and time were optimized. Under optimized conditions, the target sulfonamides achieved excellent linearity with correlation coefficients of 0.9924–0.9994 within the concentration range of 0.05–5 μg/L. The limits of detection of the eight sulfonamides were 3.1–11.2 ng/L, and the limits of quantification were 10.3–37.3 ng/L. Enrichment factors of 0.1 and 5 μg/L sulfonamides spiked in lake water were 14–60, and recoveries were 56–113% with relative standard derivations of 3–19%. Applied with the developed method, sulfamerazine and sulfamethoxazole were measurable in both influent and effluent water of the three sewage treatment plants in Guangzhou, China. The developed method was sensitive and provided an alternative method for simultaneously enriching and quantifying multiple sulfonamides in environmental water.  相似文献   

20.
In the current study, a novel technique for extraction and determination of trans,trans‐muconic acid, hippuric acid, and mandelic acid was developed by means of ion‐pair‐based hollow fiber liquid‐phase microextraction in the three‐phase mode. Important factors affecting the extraction efficiency of the method were investigated and optimized. These metabolites were extracted from 10 mL of the source phase into a supported liquid membrane containing 1‐octanol and 10% w/v of Aliquat 336 as the ionic carrier followed by high‐performance liquid chromatography analysis. The organic phase immobilized in the pores of a hollow fiber was back‐extracted into 24 μL of a solution containing 3.0 mol/L sodium chloride placed inside the lumen of the fiber. A very high preconcentration of 212‐ to 440‐fold, limit of detection of 0.1–7 μg/L, and relative recovery of 87–95% were obtained under the optimized conditions of this method. The relative standard deviation values for within‐day and between‐day precisions were calculated at 2.9–8.5 and 4.3–11.2%, respectively. The method was successfully applied to urine samples from volunteers at different work environments. The results demonstrated that the method can be used as a sensitive and effective technique for the determination of the metabolites in urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号