首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The synthesis and full structural and spectroscopic characterization of three 5‐(1,2,4‐triazol‐C‐yl)tetrazol‐1‐ol compounds with selected energetic moieties including nitrimino ( 5 ), nitro ( 6 ) and azido ( 7 ) groups are reported. The influence of those energetic moieties as well as the C? C connection of a tetrazol‐1‐ol and a 1,2,4‐triazole on structural and energetic properties has been investigated. All compounds were well characterized by various means, including IR and multinuclear NMR spectroscopy, mass spectrometry, and DSC. The molecular structures of 5 – 8 were determined in the solid state by single‐crystal X‐ray diffraction. The standard heats of formation were calculated on the CBS‐4M level of theory utilizing the atomization energy method, revealing highly positive values for all compounds. The detonation parameters were calculated with the EXPLO5 program and compared to the common secondary explosive RDX. Additionally, sensitivities towards impact, friction and electrostatic discharge were determined.  相似文献   

2.
Two salts based on 1H,1′H‐5,5′‐bitetrazole‐1,1′‐diolate (BTO) anion with pyrazole ( 1 ) and imidazole ( 2 ) cations were synthesized with metathesis reactions. Structural characterization was accomplished for them by using the element analysis, Fourier transform infrared spectroscopy (FT‐IR), NMR and mass spectrum, and X‐ray single crystal diffraction. Thermal analysis for the title salts were determined by means of differential scanning calorimetry (DSC) and thermogravimetry‐derivative thermogravimetry (TG‐DTG) as well as the calculation of non‐isothermal kinetic parameters. Consequently, both salts shown acceptable thermal stabilities as the decomposition temperatures were over 200 °C. The enthalpies of formation were calculated for these salts using the measured combustion energies with a result of 70.6 kJ · mol–1 for 1 and –47.8 kJ · mol–1 for 2 , respectively. Impact and friction sensitivities were also tested and the results indicated that these salts both have low sensitivities (>40 J, 120 N). The title energetic salts possess acceptable performance, they can therefore be applied in the field of energetic materials.  相似文献   

3.
The title compound, [Ag(C15H11N4O2S)]n, was synthesized by the reaction of 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (Hptmba) with silver nitrate and triethylamine at room temperature. The asymmetric unit contains one crystallographically independent AgI cation and one ptmba ligand. Each AgI cation is tricoordinated by two carboxylate O atoms and one tetrazole N atom from three different ptmba ligands, displaying a distorted T‐shaped geometry. Three AgI cations are linked by tris‐monodentate bridging ptmba ligands to form a one‐dimensional double chain along the c axis, which is further consolidated by an intrachain π–π contact with an offset face‐to‐face distance of 4.176 (3) Å between the centroids of two adjacent aromatic rings in neighbouring benzoate groups. The one‐dimensional chains are linked into a three‐dimensional supramolecular framework by additional π–π interchain interactions, viz. of 3.753 (3) Å between two phenyl substituents of the tetrazole rings and of 4.326 (2) Å between a benzoate ring and a tetrazole ring. Thermogravimetric analysis and the fluorescence spectrum of the title compound reveal its good thermal stability and a strong green luminescence at room temperature.  相似文献   

4.
Five energetic compounds, 3,3‐bis(tetrazol‐5‐yl)‐4,4‐azofurazan (DTZAF), 3‐nitro‐4‐(tetrazol‐5‐yl)furazan (NTZF), hydrazinium 3‐amino‐4‐(tetrazol‐5‐yl)furazan (HATZF), triaminoguanidinium 3‐amino‐4‐(tetrazol‐ 5‐yl)furazan (TAGATZF) and guanylureaium 3‐amino‐4‐(tetrazol‐5‐yl)furazan (MATZF), were prepared using 3‐amino‐4‐(tetrazol‐5‐yl)furazan (ATZF) as starting material and their structures were characterized by FT‐IR, 1H NMR, 13C NMR and elemental analysis. The properties of NTZF were estimated:density is 1.67 g/cm3, enthalpy of formation +415.41 kJ/mol and detonation velocity 8257.83 m/s. The main thermal properties of four compounds, DTZAF, HATZF, TAGATZF and MATZF, were analyzed by TG and DSC techniques and the results showed that their melting points are 251.9, 159.7, 205.4 and 211.4°C, respectively, and their first decomposition temperatures are 256.7, 258.6, 231.7 and 268.6°C, respectively. The fact that their decomposition temperatures were over 230°C showed that they exhibit better thermal stability.  相似文献   

5.
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (HL) and 4,4′‐bipyridine (bpy) under hydrothermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water molecules and one unligated water molecule. Each NiII centre is six‐coordinated by two monodentate carboxylate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water molecules, displaying a nearly ideal octahedral geometry. The NiII ions are bridged by 4,4′‐bipyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one‐dimensional fishbone‐like chain structure. These one‐dimensional fishbone‐like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking interactions to form a three‐dimensional supramolecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.  相似文献   

6.
2,6‐Bis(picrylamino)pyridine ( 1 ; pre‐PYX) and 2,6‐bis(picrylamino)‐3,5‐dinitropyridine ( 2 ; PYX) were synthesized using an improved literature method. Compounds 1 and 2 were reinvestigated in detail and the X‐ray structures ( 1 : ρ=1.698 g cm?3 at 173 K; 2 : ρ=1.757 g cm?3 at 298 K) are given. The reactions of 2 with different bases, such as alkali metal hydroxides (sodium, potassium, rubidium, cesium), and N‐bases (ammonia, hydrazine, hydroxylamine, guanidinium carbonate, aminoguanidine bicarbonate) are reported, as well as metathesis reactions producing energetic salts. Several energetic compounds were synthesized and characterized for the first time using vibrational (IR, Raman) and multinuclear NMR spectroscopy, mass spectrometry, elemental analysis, and DSC. The crystal structures of four energetic salts were determined using low temperature single‐crystal X‐ray diffraction. Heats of formation for the metal‐free species were calculated using the Gaussian 09 software. Detonation parameters were estimated using the EXPLO5 program. The sensitivities towards impact, friction, and electrostatic discharge were also determined.  相似文献   

7.
A novel straightforward synthesis of 3‐(1H‐tetrazol‐5‐yl)coumarins (=3‐(1H‐tetrazol‐5‐yl)‐2H‐1‐benzopyran‐2‐ones) 6 via domino Knoevenagel condensation, Pinner reaction, and 1,3‐dipolar cycloaddition of substituted salicylaldehydes (=2‐hydroxybenzaldehydes), malononitrile (propanedinitrile), and sodium azide in H2O is reported (Scheme 1 and Table 2). This general protocol provides a wide variety of 3‐(1H‐tetrazol‐5‐yl)coumarins in good yields under mild reaction conditions.  相似文献   

8.
Oxidative cyclization of the sugar hydrazones ( 3a‐f ) derived from {7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐ylsulfanyl}acetic acid hydrazide ( 1 ) and aldopentoses 2a‐c or aldohexoses 2d‐f with bromine in acetic acid in the presence of anhydrous sodium acetate, followed by acetylation with acetic anhydride gave the corresponding 2‐(per‐O‐acetyl‐alditol‐l‐yl)‐5‐methylthio{7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 5a‐f ). Condensative cyclization of the sugar hydrazones ( 3a‐f ) by heating with acetic anhydride gave the corresponding 3‐acetyl‐2‐(per‐O‐acetyl‐alditol‐1‐yl)‐2,3‐dihydro‐5‐methylthio{7‐acetyl‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 11a‐f ). De‐O‐acetylation of the acyclo C‐nucleoside peracetates ( 5 and 11 ) with methanolic ammonia afforded the hydrazono lactones ( 7 ) and the acyclo C‐nucleosides ( 12 ), respectively. The structures of new oxadiazole derivatives were confirmed by analytical and spectral data.  相似文献   

9.
High‐density energetic salts that contain nitrogen‐rich cations and the 5‐(tetrazol‐5‐ylamino)tetrazolate (HBTA?) or the 5‐(tetrazol‐5‐yl)tetrazolate (HBT?) anion were readily synthesized by the metathesis reactions of sulfate salts with barium compounds, such as bis[5‐(tetrazol‐5‐ylamino)tetrazolate] (Ba(HBTA)2), barium iminobis(5‐tetrazolate) (BaBTA), or barium 5,5′‐bis(tetrazolate) (BaBT) in aqueous solution. All salts were fully characterized by IR spectroscopy, multinuclear (1H, 13C, 15N) NMR spectroscopy, elemental analyses, density, differential scanning calorimetry (DSC), and impact sensitivity. Ba(HBTA)2 ? 4 H2O crystallizes in the triclinic space group P$\bar 1$ , as determined by single‐crystal X‐ray diffraction, with a density of 2.177 g cm?3. The densities of the other organic energetic salts range between 1.55 and 1.75 g cm?3 as measured by a gas pycnometer. The detonation pressure (P) values calculated for these salts range from 19.4 to 33.6 GPa, and the detonation velocities (νD) range from 7677 to 9487 m s?1, which make them competitive energetic materials. Solid‐state 13C NMR spectroscopy was used as an effective technique to determine the structure of the products that were obtained from the metathesis reactions of biguanidinium sulfate with barium iminobis(5‐tetrazolate) (BaBTA). Thus, the structure was determined as an HBTA salt by the comparison of its solid‐state 13C NMR spectroscopy with those of ammonium 5‐(tetrazol‐5‐ylamino)tetrazolate (AHBTA) and diammonium iminobis(5‐tetrazolate) (A2BTA).  相似文献   

10.
Energetic compounds that incorporate multiple nitrogen‐rich heterocycles are of great interest for high‐density energetic materials. A facile synthetic strategy to combine an oxy bridge and furazan groups, as well as tetrazole‐ols, into a molecule ( 5 ) was found. Some energetic salts based on 5 were prepared by neutralization. All of the compounds were fully characterized. Additionally, the structure of 7 has been elucidated by single‐crystal XRD analysis. Physicochemical and energetic properties were also studied; these show that these newly designed energetic salts exhibit good thermal stabilities. Hydroxylammonium salt ( 6 ) has a detonation performance and sensitivities comparable with those of 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX).  相似文献   

11.
Two highly energetic nitric acid esters were synthesized from the dimer of dihydroxyacetone. 1,3‐Dinitratoacetone ( 1 ) and its dimer 2,5‐bis(nitratomethyl‐2,5‐nitrato)‐1,4‐dioxane ( 2 ) were characterized by single‐crystal X‐ray diffraction, vibrational spectroscopy (IR and Raman), multinuclear NMR spectroscopy, and elemental analysis. The thermal behavior was investigated with DTA measurements. Although showing the same atomic stoichiometry, dimer 2 shows significantly higher sensitivities measured by BAM methods (drophammer and friction tester). Due to the high oxygen content of 62.2 %, 1 and 2 were evaluated as potential high energy dense oxidizers.  相似文献   

12.
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network.  相似文献   

13.
A new crystal form of diammonium 5,5′‐bistetrazole‐1,1′‐diolate ( 1 ) was prepared by two novel methods and fully characterized by using IR, NMR spectroscopy, elementary analysis, single crystal X‐ray crystallography and thermal gravity/differential thermal analysis (TG/DTA). Crystalline 1 was found as monoclinic and space group of P21/c (14). The TG/DTA analysis showed that the decomposition temperature of 1 was 287.8°C with a mass loss of 91.2% in the range of 220–300°C at a heating rate of 5°C/min. The sensitivities test towards impact, friction of 1 indicated that 1 has much lower sensitivities than those of RDX/HMX and is comparable to those of TNT, which suggested that 1 could be used as a good candidate of new insensitive energetic compound.  相似文献   

14.
5‐(Tetrazol‐1‐yl)‐2H‐tetrazole ( 1 ), or 1,5′‐bistetrazole, was synthesized by the cyclization of 5‐amino‐1H‐tetrazole, sodium azide and triethyl orthoformate in glacial acetic acid. A derivative of 1 , 2‐methyl‐5‐(tetrazol‐1‐yl)tetrazole ( 2 ) can be obtained by this method starting from 5‐amino‐2‐methyl‐tetrazole. Furthermore, selected salts of 1 with nitrogen‐rich and metal (alkali and transition metal) cations, including hydroxylammonium ( 4 ), triaminoguanidinium ( 5 ), copper(I) ( 8 ) and silver ( 9 ), as well as copper(II) complexes of both 1 and 2 were prepared. An intensive characterization of the compounds is given, including vibrational (IR, Raman) and multinuclear NMR spectroscopy, mass spectrometry, DSC and single‐crystal X‐ray diffraction. Their sensitivities towards physical stimuli (impact, friction, electrostatic) were determined according to Bundesamt für Materialforschung (BAM) standard methods. Energetic performance (detonation velocity, pressure, etc.) parameters were calculated with the EXPLO5 program, based on predicted heats of formation derived from enthalpies computed at the CBS‐4M level of theory and utilizing the atomization energy method. From the analytical and calculated data, their potential as energetic materials in different applications was evaluated and discussed.  相似文献   

15.
In the development of new energetic materials, the main challenge is the combination of high energy content with chemical and mechanical stability, two properties that are often contradictory. In this study, the syntheses and comprehensive characterizations of 4,5‐bis(tetrazole‐5‐yl)‐1,2,3‐triazole and the novel 4,5‐bis(1‐hydroxytetrazole‐5‐yl)‐1,2,3‐triazole, as well as their energetic properties, are presented, combining the advantages of the more energetic tetrazole and the more stable 1,2,3‐triazole rings. Nitrogen‐rich salts of both compounds were synthesized to investigate their detonation performances and combustion behavior calculated by computer codes for potential application in erosion‐reduced gun propellant mixtures due to their high nitrogen content. The structures of several of the compounds were studied by single‐crystal X‐ray diffraction and, especially in the case of 4,5‐bis(tetrazol‐5‐yl)‐1,2,3‐triazole, revealed the site of deprotonation.  相似文献   

16.
The copolymerization of 1,5‐dioxepan‐2‐one (DXO) and ε‐caprolactone, initiated by a five‐membered cyclic tin alkoxide initiator, was performed in chloroform at 60 °C. Copolymers with different molar ratios of DXO (25, 40, and 60%) were synthesized and characterized. 13C NMR spectroscopy of the carbonyl region revealed the formation of copolymers with a blocklike structure. Differential scanning calorimetry measurements showed that all the copolymers had a single glass transition between ?57 and ?49 °C and a melting temperature in the range of 30.1–47.7 °C, both of which were correlated with the amount of DXO. An increase in the amount of DXO led to an increase in the glass‐transition temperature and to a decrease in the melting temperature. Dynamic mechanical thermal analysis measurements confirmed the results of the calorimetric analysis, showing a single sharp drop in the storage modulus in the temperature region corresponding to the glass transition. Tensile testing demonstrated good mechanical properties with a tensile strength of 27–39 MPa and an elongation at break of up to 1400%. The morphology of the copolymers was examined with polarized optical microscopy and atomic force microscopy; the films that crystallized from the melt showed a short fibrillar structure (with a length of 0.05–0.4 μm) in contrast to the untreated solution‐cast films. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2412–2423, 2003  相似文献   

17.
This study features the preparation of three new energetic C‐azido‐1, 2, 4‐triazoles, with the anion of one being a new binary C–N compound. 5‐Azido‐1H‐1, 2, 4‐triazole‐3‐carbonitrile ( 1 ) was prepared from 5‐amino‐1H‐1, 2, 4‐triazole‐3‐carbonitrile and further derivatized to 5‐azido‐1H‐1, 2, 4‐triazole‐3‐carbohydroximoyl chloride ( 5 ) with 3‐azido‐1H‐1, 2, 4‐triazole‐5‐carboxamidoxime ( 3 ) as an intermediate. The ability of 1 and 3 for salt formation was shown with the respective silver salts 2 and 4 . All compounds were well characterized by various means, including IR and multinuclear NMR spectroscopy, mass spectrometry, and DSC. The molecular structures of 1 , 3 , and 5 in the solid state were determined by single‐crystal X‐ray diffraction. The sensitivities towards various outer stimuli (impact, friction, electrostatic discharge) were determined according to BAM standards. The silver salts were additionally tested for their potential as primary explosives.  相似文献   

18.
Nitrogen‐rich 3, 4‐bis(1H‐tetrazol‐5‐yl)furoxan (H2BTF, 2 ) and its energetic salts with excellent thermal stability were successfully synthesized and fully characterized by 1H, and 13C NMR, and IR spectroscopy, differential scanning calorimetry (DSC), and elemental analyses. Additionally, the structures of barium ( 3 ) and 1‐methyl‐3, 4, 5‐triamino‐triazolium ( 10 ) salts were confirmed by single‐crystal X‐ray diffraction. The densities of the energetic salts paired with organic cations range between 1.56 and 1.85 g · cm–3 as measured by a gas pycnometer. Based on the measured densities and calculated heats of formation, the detonation pressures and velocities are calculated to be in the range 23.4–32.0 GPa and 7939–8915 m · s–1, which make them competitive energetic materials.  相似文献   

19.
A homochiral helical three‐dimensional coordination polymer, poly[[(μ2‐acetato‐κ3O,O′:O)(hydroxido‐κO)(μ4‐5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ5N1,O:N2:N4:N5)(μ3‐5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ4N1,O:N2:N4:N5)dicadmium(II)] 0.75‐hydrate], {[Cd2(C7H5N6O)2(CH3COO)(OH)]·0.75H2O}n, was synthesized by the reaction of cadmium acetate, N‐(1H‐tetrazol‐5‐yl)isonicotinamide (H‐NTIA), ethanol and H2O under hydrothermal conditions. The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated 5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ide (NTIA) ligands, one acetate anion, one hydroxide anion and three independent partially occupied water sites. The two CdII cations, with six‐coordinated octahedral and seven‐coordinated pentagonal bipyramidal geometries are located on general sites. The tetrazole group of one symmetry‐independent NTIA ligand links one of the independent CdII cations into 61 helical chains, while the other NTIA ligand links the other independent CdII cations into similar but unequal 61 helical chains. These chains, with a pitch of 24.937 (5) Å, intertwine into a double‐stranded helix. Each of the double‐stranded 61 helices is further connected to six adjacent helical chains through an acetate μ2‐O atom and the tetrazole group of the NTIA ligand into a three‐dimensional framework. The helical channel is occupied by the isonicotinamide groups of NTIA ligands and two helices are connected to each other through the pyridine N and carbonyl O atoms of isonicotinamide groups. In addition, N—H...O and O—H...N hydrogen bonds exist in the complex.  相似文献   

20.
Reaction of PdCl2(CH3CN)2 with the sodium salt of 5‐mercapto‐1‐methyltetrazole (MetzSNa) in methanol solution affords an interesting dinuclear palladium complex [Pd2(MetzS)4 ] ( 1 ). However, treatment of PdCl2(CH3CN)2 with neutral MetzSH ligand in methanol solution produces a mononuclear palladium complex [Pd(MetzSH)4]Cl2 ( 2 ). Both complexes were characterized by IR, 1HNMR, UV‐Vis spectroscopy as well as X‐ray crystallography. Single‐crystal X‐ray diffraction analyses of two complexes lead to the elucidation of the structures and show that 1 possesses an asymmetric structure: one Pd atom is tetracoordinated by three sulfur atoms and one nitrogen atom to form PdS3N coordination sphere, the other Pd atom is tetracoordinated by three nitrogen atoms and one sulfur atom to form PdSN3 coordination sphere. The molecules of 1 are associated to 1‐D infinite linear chain by weak intermolecular Pd···S contacts in the crystal lattice. In 2 , the Pd atom lies on an inversion center and has a square‐planar coordination involving the S atoms from four MetzSH ligands. The two chloride ions are not involved in coordination, but are engaged in hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号