首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complete resistance (CR) and partial resistance (PR) of rice (Oryza sativa L.) to its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo), was genetically dissected by using 2 mapping populations and 10 Xoo races. Two CR genes, 50 quantitative resistance loci, and 60 digenic interactions were identified, which showed various degrees of race specificity to the Xoo races. The complex epistasis between these loci led us to the discovery of complex genetic networks underlying the rice defensive system to Xoo. The networks consisted of two major components: one representing interactions between alleles at the R loci of rice and alleles at the corresponding avirulence loci of Xoo for CR and the other comprising interactions between quantitative resistance loci in rice and their corresponding aggressiveness loci in Xoo for PR. The race specificity of PR and its strong genetic overlap with CR indicate that PR is essentially "weaker" CR. The genetic networks discovered are expected to maintain a high level of the allelic diversity at avirulent loci in the pathogen by stabilizing selection, which may maintain a high allelic diversity at R loci in the host by the frequency-dependent selection.  相似文献   

2.
3.
Os8N3 is a host disease-susceptibility gene for bacterial blight of rice   总被引:4,自引:0,他引:4  
Many bacterial diseases of plants depend on the interaction of type III effector genes of the pathogen and disease-susceptibility genes of the host. The host susceptibility genes are largely unknown. Here, we show that expression of the rice gene Os8N3, a member of the MtN3 gene family from plants and animals, is elevated upon infection by Xanthomonas oryzae pv. oryzae strain PXO99(A) and depends on the type III effector gene pthXo1. Os8N3 resides near xa13, and PXO99(A) failed to induce Os8N3 in rice lines with xa13. Silencing of Os8N3 by inhibitory RNA produced plants that were resistant to infection by strain PXO99(A) yet remained susceptible to other strains of the pathogen. The effector gene avrXa7 from strain PXO86 enabled PXO99(A) compatibility on either xa13- or Os8N3-silenced plants. The findings indicate that Os8N3 is a host susceptibility gene for bacterial blight targeted by the type III effector PthXo1. The results support the hypothesis that X. oryzae pv. oryzae commandeers the regulation of otherwise developmentally regulated host genes to induce a state of disease susceptibility. Furthermore, the results support a model in which the pathogen induces disease susceptibility in a gene-for-gene manner.  相似文献   

4.
5.
The oomycete Phytophthora infestans causes late blight, the potato disease that precipitated the Irish famines in 1846 and 1847. It represents a reemerging threat to potato production and is one of >70 species that are arguably the most devastating pathogens of dicotyledonous plants. Nevertheless, little is known about the molecular bases of pathogenicity in these algae-like organisms or of avirulence molecules that are perceived by host defenses. Disease resistance alleles, products of which recognize corresponding avirulence molecules in the pathogen, have been introgressed into the cultivated potato from a wild species, Solanum demissum, and R1 and R3a have been identified. We used association genetics to identify Avr3a and show that it encodes a protein that is recognized in the host cytoplasm, where it triggers R3a-dependent cell death. Avr3a resides in a region of the P. infestans genome that is colinear with the locus containing avirulence gene ATR1(NdWsB) in Hyaloperonospora parasitica, an oomycete pathogen of Arabidopsis. Remarkably, distances between conserved genes in these avirulence loci were often similar, despite intervening genomic variation. We suggest that Avr3a has undergone gene duplication and that an allele evading recognition by R3a arose under positive selection.  相似文献   

6.
Over the last decade, advances in diagnostic systems and the introduction of new antifungal agents have significantly improved outcomes in immunocompromised patients who develop invasive aspergillosis. However, mortality rates remain relatively unchanged for less common, but highly aggressive, mold infections such as mucormycosis. Recent genome sequencing of Rhizopus oryzae revealed evidence of a whole-genome duplication event during the evolution of this pathogen. Consequently, R. oryzae has a 2- to 10-fold enrichment in gene families associated with ergosterol and cell wall biosynthesis, cell growth, iron uptake, and known fungal virulence factors compared with sequenced Aspergillus fumigatus strains. This genetic plasticity may explain the remarkable capability of this pathogen for rapid growth in hostile environments, such as the inflammatory milieu, as well as its relative resistance to multiple antifungal classes. Herein, we examine how pharmacological aspects of treating mucormycosis may differ from those of the more commonly encountered invasive aspergillosis.  相似文献   

7.
Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.  相似文献   

8.
目的 分析我国146株单增李斯特菌的基因组特征,了解不同家系和克隆群菌株遗传特征的差异.方法 从NCBI数据库收集我国146株不同来源、省份和分离时间的单增李斯特菌基因组数据,利用生物信息学分析软件分别对其进行基因组注释、系统发育树构建和遗传元件分析.结果 本研究中相同家系、血清型和克隆群的单增李斯特菌在系统发育进化树...  相似文献   

9.
A genetic approach was used to assess the extent to which a particular plant defense response, phytoalexin biosynthesis, contributes to Arabidopsis thaliana resistance to Pseudomonas syringae pathogens. The A. thaliana phytoalexin, camalexin, accumulated in response to infection by various P. syringae strains. No correlation between pathogen avirulence and camalexin accumulation was observed. A biochemical screen was used to isolate three mutants of A. thaliana ecotype Columbia that were phytoalexin deficient (pad mutants). The mutations pad1, pad2, and pad3 were found to be recessive alleles of three different genes. pad1 and pad2 were mapped to chromosome IV and pad3 was mapped to chromosome III. Infection of pad mutant plants with strains carrying cloned avirulence genes revealed that the pad mutations did not affect the plants' ability to restrict the growth of these strains. This result strongly suggests that in A. thaliana, phytoalexin biosynthesis is not required for resistance to avirulent P. syringae pathogens. Two of the pad mutants displayed enhanced sensitivity to isogenic virulent P. syringae pathogens, suggesting that camalexin may serve to limit the growth of virulent bacteria.  相似文献   

10.
本文对青海省喜马拉雅旱獭氨疫自然疫源地内的383株鼠疫菌的毒力测定结果进行了分析。有373株属于强毒鼠疫菌,7株中等毒力菌,3株为自然界分离的弱毒鼠疫菌。于同一地区不同流行年代、不同宿主分离的鼠疫菌毒力无明显差异,青藏高原型菌株毒力比祁连山型菌株毒力强。缺失Pgm、VW因子的菌株大多毒力减弱,但有的也保持了较强毒力。另有12株经过长期人工培养基传代保存的菌株毒力明显降低。  相似文献   

11.
We investigated the prevalence of virulent Rhodococcus equi in clinical isolates from 69 sporadic cases (60 men, 8 women, and 1 patient of unknown sex) in Chiang Mai, Thailand, between 1993 and 2001. Fifty were human immunodeficiency virus (HIV) positive, 3 were HIV negative, and HIV status was unknown for 16. Fifty-two (75%) of 69 isolates were strains of intermediate virulence that contained the virulence-associated 20-kDa antigen, and 17 isolates (25%) were avirulent. No virulent strains with the virulence-associated 15-17-kDa antigens were identified. R. equi was isolated from HIV-positive patients' houses and those of their neighbors: avirulent strains were widespread, but only 1 strain of intermediate virulence was isolated. R. equi strains of intermediate virulence were isolated from 4 (0.8%) of 500 submaxillary lymph nodes from apparently healthy pigs in Chiang Mai. The routes of R. equi acquisition should be investigated from the viewpoint of zoonosis and public health.  相似文献   

12.
This article provides a brief overview of some of the major concepts and molecular features of plant and animal innate immune systems. The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the AvrXa21 elicitor. Xa21 codes for a receptor-like kinase consisting of an extracellular leucine-rich repeat domain, a transmembrane domain, and a cytoplasmic kinase domain. We show that AvrXa21 activity requires the presence of rax (required for AvrXa21) A, raxB, and raxC genes that encode components of a type one secretion system. In contrast, an hrpC(-) strain deficient in type three secretion maintains AvrXa21 activity. Xanthomonas campestris pv. campestris can express AvrXa21 activity if raxST, encoding a putative sulfotransferase, and raxA are provided in trans. Expression of rax genes depends on population density and other functioning rax genes. This and other data suggest that the AvrXa21 pathogen-associated molecule is involved in quorum sensing. Together these data suggest that AvrXa21 represents a previously uncharacterized class of Gram-negative bacterial signaling molecules. These results from our studies of the XA21/AvrXa21 interaction call for some modifications in the way we think about innate immunity strategies.  相似文献   

13.
Most studies performed in avian viral strains seem to indicate that virulence is a polygenic phenomenon. However, hemagglutinin and neuraminidase and the genes codifying these substances (genes 4 and 6) play an essential role in viral pathogenesis. Avian strains can be classified as avirulent or virulent according to the ability of hemagglutinin to be activated by endoproteases of the respiratory tract only or by proteases from other tissues. This ability is based on the progressive development of mutations that lead to the substitution of the normal amino acids at the point of hemagglutinin hydrolysis by the other basic amino acids that determine the amplification of the spectrum of hydrolysis and activation. Neuraminidase participates in the acquisition of virulence through its capacity to bind to plasminogen and by increasing the concentration of activating proteases. Adaptation to the host, through recognition of the cell receptor, is another factor determining the virulence and interspecies transmission of avian strains. From an epidemiological point of view, viral strains should be subtyped and the activating capacity of hemagglutinin should be determined to identify their degree of virulence.  相似文献   

14.
我国小肠结肠炎耶氏菌毒力株的特征   总被引:3,自引:0,他引:3  
本文对我国各地分离的小肠结肠炎耶氏菌的毒力特征进行测定,所有毒力株除个别外,均有VW抗原、Vi抗原和毒力因子,它们的检测结果一致。有毒株还有一条40~50MDa的质粒带,即所谓毒力质粒,但有此毒力质粒的菌株并非都是有毒株,视其有否特异性外膜蛋白(约200KDa)而定。自凝性也是检测耶氏菌毒力的一种方法,但其敏感性与特异性均不及VW抗原测定。因此测定菌株毒力,以VW抗原、Vi抗原和毒力因子测定最特异而敏感,特别后两种方法简单、易行、可靠,可在基层单位推广使用。  相似文献   

15.
Isolates of Rhynchosporium secalis collected from two experimental barley populations were scored for putative isozyme, colony color, and virulence loci. Allelic frequencies, multilocus haplotype frequencies, and multilocus genetic structure differed in the two populations of R. secalis; haplotypes also differed widely from each other in virulence. The average virulence of isolates collected from the more resistant host population was greater than the average virulence of the isolates collected from the less resistant host population; also the least virulent haplotype, which made up 19% of the pathogen population collected from the less resistant host population, accounted for only 0.3% of the isolates collected from the more resistant host population. It was concluded that the genetic systems of the barley host and fungal pathogen interacted in a complementary fashion and that the genetic structures of both the host and pathogen populations were shaped by coevolutionary processes featuring interactions among loci affecting many different traits, including interactions among host resistance genes and pathogen virulence genes.  相似文献   

16.
The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.  相似文献   

17.
Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize the evolutionary dynamics of a lineage of a clinically important opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it adapts to the airways of several individual cystic fibrosis patients over 200,000 bacterial generations, and provide estimates of mutation rates of bacteria in a natural environment. In contrast to predictions based on in vitro evolution experiments, we document limited diversification of the evolving lineage despite a highly structured and complex host environment. Notably, the lineage went through an initial period of rapid adaptation caused by a small number of mutations with pleiotropic effects, followed by a period of genetic drift with limited phenotypic change and a genomic signature of negative selection, suggesting that the evolving lineage has reached a major adaptive peak in the fitness landscape. This contrasts with previous findings of continued positive selection from long-term in vitro evolution experiments. The evolved phenotype of the infecting bacteria further suggests that the opportunistic pathogen has transitioned to become a primary pathogen for cystic fibrosis patients.  相似文献   

18.
The hypothesis that host adaptation in virulent Newcastle disease viruses (NDV) has been accompanied by virulence modulation is reviewed here. Historical records, experimental data, and phylogenetic analyses from available GenBank sequences suggest that currently circulating NDVs emerged in the 1920–1940′s from low virulence viruses by mutation at the fusion protein cleavage site. These viruses later gave rise to multiple virulent genotypes by modulating virulence in opposite directions. Phylogenetic and pathotyping studies demonstrate that older virulent NDVs further evolved into chicken-adapted genotypes by increasing virulence (velogenic-viscerotropic pathotypes with intracerebral pathogenicity indexes [ICPIs] of 1.6 to 2), or into cormorant-adapted NDVs by moderating virulence (velogenic–neurotropic pathotypes with ICPIs of 1.4 to 1.6), or into pigeon-adapted viruses by further attenuating virulence (mesogenic pathotypes with ICPIs of 0.9 to 1.4). Pathogenesis and transmission experiments on adult chickens demonstrate that chicken-adapted velogenic-viscerotropic viruses are more capable of causing disease than older velogenic-neurotropic viruses. Currently circulating velogenic–viscerotropic viruses are also more capable of replicating and of being transmitted in naïve chickens than viruses from cormorants and pigeons. These evolutionary virulence changes are consistent with theories that predict that virulence may evolve in many directions in order to achieve maximum fitness, as determined by genetic and ecologic constraints.  相似文献   

19.
The population structure of Toxoplasma gondii includes three highly prevalent clonal lineages referred to as types I, II, and III, which differ greatly in virulence in the mouse model. Previous studies have implicated a family of serine/threonine protein kinases found in rhoptries (ROPs) as important in mediating virulence differences between strain types. Here, we explored the genetic basis of differences in virulence between the highly virulent type I lineage and moderately virulent type II based on successful genetic cross between these lineages. Genome-wide association revealed that a single quantitative trait locus controls the dramatic difference in lethality between these strain types. Neither ROP16 nor ROP18, previously implicated in virulence of T. gondii, was found to contribute to differences between types I and II. Instead, the major virulence locus contained a tandem cluster of polymorphic alleles of ROP5, which showed similar protein expression between strains. ROP5 contains a conserved serine/threonine protein kinase domain that includes only part of the catalytic triad, and hence, all members are considered to be pseudokinases. Genetic disruption of the entire ROP5 locus in the type I lineage led to complete attenuation of acute virulence, and complementation with ROP5 restored lethality to WT levels. These findings reveal that a locus of polymorphic pseudokinases plays an important role in pathogenesis of toxoplasmosis in the mouse model.  相似文献   

20.
The rapid emergence of Escherichia coli O157:H7 from an unknown strain in 1982 to the dominant hemorrhagic E. coli serotype in the United States and the cause of widespread outbreaks of human food-borne illness highlights a need to evaluate critically the extent to which genomic plasticity of this important enteric pathogen contributes to its pathogenic potential and its evolution as well as its adaptation in different ecological niches. Aimed at a better understanding of the evolution of the E. coli O157:H7 pathogenome, the present study presents the high-quality sequencing and comparative phylogenomic analysis of a comprehensive panel of 25 E. coli O157:H7 strains associated with three nearly simultaneous food-borne outbreaks of human disease in the United States. Here we present a population genetic analysis of more than 200 related strains recovered from patients, contaminated produce, and zoonotic sources. High-resolution phylogenomic approaches allow the dynamics of pathogenome evolution to be followed at a high level of phylogenetic accuracy and resolution. SNP discovery and study of genome architecture and prophage content identified numerous biomarkers to assess the extent of genetic diversity within a set of clinical and environmental strains. A total of 1,225 SNPs were identified in the present study and are now available for typing of the E. coli O157:H7 lineage. These data should prove useful for the development of a refined phylogenomic framework for forensic, diagnostic, and epidemiological studies to define better risk in response to novel and emerging E. coli O157:H7 resistance and virulence phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号