共查询到20条相似文献,搜索用时 67 毫秒
1.
臭氧-生物活性炭-纳滤膜深度处理饮用水试验研究 总被引:1,自引:0,他引:1
采用臭氧-生物活性炭-纳滤工艺去除城市管网供水中的污染物,使其达到饮用净水水质标准.研究表明:在臭氧投加量为3~4 mg/L,接触时间8~10 min,生物活性炭罐滤速3~4 m/s的运行条件下,臭氧-生物活性炭预处理能够大量去除原水中的污染物,保证纳滤工艺的正常运行;纳滤膜在操作压力0.7~0.8 MPa,膜通量为27.3 L/(m2·h)的条件下,既能去除无机污染物,又能够保证一些对人体有益的离子不被完全截留;且能够有效去除原水中的TOC、AOC、CODMMn、色度、浊度及细菌等,确保饮用水的安全性和生物稳定性. 相似文献
2.
3.
臭氧生物活性炭深度处理饮用水中抗生素的研究 总被引:2,自引:0,他引:2
介绍了饮用水中抗生素污染的来源及潜在危害,阐述了臭氧氧化及生物活性炭技术处理微量抗生素污染的机理,概括了最近几年国内外关于饮用水中抗生素物质控制技术的研究成果,指出臭氧生物活性碳技术在抗生素微污染水处理领域的广泛应用前景。 相似文献
4.
5.
6.
7.
8.
结合上海市金海水厂80万m3/d臭氧—生物活性炭系统的调试案例,研究不同洗炭模式、累计过滤时间、活性炭浸泡时间对不合格水水质的影响。结果显示,水质不同的不合格水应选择不同的排放途径。延长单次连续过滤和前期活性炭泡炭时间,有利于尽快降低出水pH和浑浊度。单侧滤池后期大水量同时过滤对出水pH下降作用更为明显,单侧过滤水质达标后单组滤池过滤出水水质稳定。并网后深度处理系统运行稳定,出水水质符合《生活饮用水卫生标准》(GB 5749-2006)。 相似文献
9.
研究臭氧-生物活性炭工艺在间歇性运行时炭层中生物量的保持方法以及不同保存方式对该工艺重新运行净化效能的影响。结果表明,臭氧-生物活性炭工艺在停止运行后对生物活性炭柱采用浸泡保存时,活性炭层中的水质发生了很大的变化,活性炭层中的生物量发生了下降。同时周期性的换水能够延缓活性炭柱在浸泡保存时生物量的下降速度。在臭氧-生物活性炭工艺重新运行期间,周期换水减少生物量的下降虽然对浊度和UV254的去除效果影响不大,但是能够使得臭氧-生物活性炭工艺在短时间内对CODMn和NH3-N的去除率接近活性炭工艺在保存之前对其的去除率。 相似文献
10.
11.
12.
13.
Hsu YC Huang HH Huang YD Chu CP Chung YJ Huang YT 《Water science and technology》2012,66(10):2185-2193
Water shortage has become an emerging environmental issue. Reclamation of the effluent from municipal wastewater treatment plant (WWTP) is feasible for meeting the growth of water requirement from industries. In this study, the results of a pilot-plant setting in Futian wastewater treatment plant (Taichung, Taiwan) were presented. Two processes, sand filter - ultrafiltration - reverse osmosis (SF-UF-RO) and sand filter - electrodialysis reversal (SF-EDR), were operated in parallel to evaluate their stability and filtrate quality. It has been noticed that EDR could accept inflow with worse quality and thus required less pretreatment compared with RO. During the operation, EDR required more frequent chemical cleaning (every 3 weeks) than RO did (every 3 months). For the filtrate quality, the desalination efficiency of SF-EDR ranged from 75 to 80% in continuous operation mode, while the conductivity ranged from 100 to 120 μS/cm, with turbidity at 0.8 NTU and total organic carbon at 1.3 mg/L. SF-EDR was less efficient in desalinating the multivalent ions than SF-UF-RO was. However for the monovalent ions, the performances of the two processes were similar to each other. Noticeably, total trihalomethanes in SF-EDR filtrate was lower than that of SF-UF-RO, probably because the polarization effects formed on the concentrated side of the EDR membrane were not significant. At the end of this study, cost analysis was also conducted to compare the capital requirement of building a full-scale wastewater reclamation plant using the two processes. The results showed that using SF-EDR may cost less than using SF-UF-RO, if the users were to accept the filtrate quality of SF-EDR. 相似文献
14.
15.
微滤-反渗透工艺在高品质再生水回用工程中的应用 总被引:1,自引:0,他引:1
北京经济技术开发区再生水工程一期规模为2万m3/d,采用微滤-反渗透双膜法工艺。介绍了工程的设计运行情况,包括前期的需水量与水质要求调查、再生水生产工艺的比选与确定、工程设计参数以及工艺的技术经济分析。分析结果表明,开发区再生水回用重点应考虑工业企业生产用水,双膜法工艺应用于高品质再生水的回用工程,技术可靠,经济可行。 相似文献
16.
L A Bereschenko A J M Stams G H J Heilig G J W Euverink M M Nederlof M C M Van Loosdrecht 《Water science and technology》2007,55(8-9):181-190
In the present study, the diversity and the phylogenetic affiliation of bacteria in a biofouling layer on reverse osmosis (RO) membranes were determined. Fresh surface water was used as a feed in a membrane-based water purification process. Total DNA was extracted from attached cells from feed spacer, RO membrane and product spacer. Universal primers were used to amplify the bacterial 16S rRNA genes. The biofilm community was analysed by 16S rRNA-gene-targeted denaturing gradient gel electrophoresis (DGGE) and the phylogenetic affiliation was determined by sequence analyses of individual 16S rDNA clones. Using this approach, we found that five distinct bacterial genotypes (Sphingomonas, Beta proteobacterium, Flavobacterium, Nitrosomonas and Sphingobacterium) were dominant genera on surfaces of fouled RO membranes. Moreover, the finding that all five "key players" could be recovered from the cartridge filters of this RO system, which cartridge filters are positioned before the RO membrane, together with literature information where these bacteria are normally encountered, suggests that these microorganisms originate from the feed water rather than from the RO system itself, and represent the fresh water bacteria present in the feed water, despite the fact that the feed water passes an ultrafiltration (UF) membrane (pore size approximately 40 nm), which is able to remove microorganisms to a large extent. 相似文献
17.
Dyeing wastewater was post-treated by using nanofiltration (NF) and reverse osmosis (RO) membranes. To reduce membrane fouling, poly (vinyl alcohol) (PVA) with a neutral charge was coated on NF and RO membranes. The effect of surface charge and surface roughness on membrane fouling was investigated. Dyeing wastewater was pre-treated by using coagulation, activated sludge process, and MF process to investigate the effect of the pre-treatment on the membrane fouling. It is demonstrated that the extent of fouling is significantly influenced by the surface roughness and the surface charge on the NF and RO membranes. A membrane with a smooth and neutral surface was fouled less. The pre-treatment was essential for avoiding NF and RO membranes fouling. The quality of the final permeate was acceptable for water reuse. 相似文献
18.
19.
广州地区城市污水碳量严重偏低、碳氮磷比例失调,其同步脱氮除磷一直是个难题,为此以SBR法进行反硝化除磷影响因素的试验研究.试验表明:缺氧段硝酸盐负荷决定反硝化吸磷效果,在硝酸盐足量情况下,缺氧除磷率达到99.4%.通过对ORP与pH的在线监测发现,ORP无法作为缺氧吸磷过程的控制参数,pH可以指示缺氧吸磷情况.以亚硝酸盐氮作为电子受体研究发现,15 mg/L以下的亚硝酸盐氮可以作为电子受体进行吸磷作用,当亚硝酸盐氮浓度达到23.8 mg/L时,反硝化吸磷受到了明显的抑制;厌氧初始pH在6~8变化时,厌氧释磷量随着pH的升高而增加,pH变化只影响厌氧释磷量,不影响释磷速率.缺氧初始pH降到6时,反硝化吸磷效果变差,缺氧段pH偏碱性条件下,反硝化除磷仍能够稳定进行. 相似文献