首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Research on seismic fluid identification driven by rock physics   总被引:8,自引:0,他引:8  
Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic parameters and reservoir parameters sets the foundation of seismic fluid identification, which is also a hot topic on the study of quantitative characterization of oil/gas reservoirs. Study on seismic fluid identification driven by rock physics has proved to be rewarding in recognizing the fluid feature and distributed regularity of the oil/gas reservoirs. This paper summarizes the key scientific problems immersed in seismic fluid identification, and emphatically reviews the main progress of seismic fluid identification driven by rock physics domestic and overseas, as well as discusses the opportunities, challenges and future research direction related to seismic fluid identification. Theoretical study and practical application indicate that we should incorporate rock physics, numerical simulation, seismic data processing and seismic inversion together to enhance the precision of seismic fluid identification.  相似文献   

2.
地震岩石物理研究概述   总被引:5,自引:3,他引:5       下载免费PDF全文
地震岩石物理是研究岩石物理性质与地震响应之间关系的一门学科,它通过对各种岩心资料、测井资料和地震资料进行综合分析,研究岩性、孔隙度、孔隙类型、孔隙流体、流体饱和度和频率参数等对岩石中弹性性质的影响,并提出利用地震响应预测岩石物理性质的理论和方法,是地震响应与储层岩石参数之间联系的桥梁,进行定量储层预测的基本前提.在查阅了大量相关资料的基础上,对国内外地震岩石物理研究现状进行了详细的概述,并总结了其存在问题和发展前景.  相似文献   

3.
Spatial constrained inverse rock physics modelling   总被引:1,自引:0,他引:1       下载免费PDF全文
Predicting reservoir parameters, such as porosity, lithology, and saturations, from geophysical parameters is a problem with non‐unique solutions. The variance in solutions can be extensive, especially for saturation and lithology. However, the reservoir parameters will typically vary smoothly within certain zones—in vertical and horizontal directions. In this work, we integrate spatial correlations in the predicted parameters to constrain the range of predicted solutions from a particular type of inverse rock physics modelling method. Our analysis is based on well‐log data from the Glitne field, where vertical correlations with depth are expected. It was found that the reservoir parameters with the shortest depth correlation (lithology and saturation) provided the strongest constraint to the set of solutions. In addition, due to the interdependence between the reservoir parameters, constraining the predictions by the spatial correlation of one parameter also reduced the number of predictions of the other two parameters. Moreover, the use of additional constraints such as measured log data at specific depth locations can further narrow the range of solutions.  相似文献   

4.
地震岩石物理模型综述   总被引:5,自引:1,他引:5       下载免费PDF全文
由于石油勘探与开发技术的发展,最近十多年岩石物理学已经成为一门非常有实用价值的学科,它有机地把岩石的物理特性和地震特性联系起来.理论模型是进行岩石物理学研究的主要方法之一.本文归纳总结了基于岩石弹性性质的各种模型,主要包括层状模型、球形孔隙模型、包含体模型和接触模型,以及它们的假设条件、适用范围、局限性和近些年来国内外的应用现状,最后预测了地震岩石物理研究的发展趋势.  相似文献   

5.
地震岩石物理研究进展   总被引:1,自引:3,他引:1       下载免费PDF全文
地震岩石物理(Seismic Rock Physics)是研究岩石物理性质与地震响应之间关系的一门学科,旨在通过研究不同温度压力条件下岩性、孔隙度、孔隙流体等对岩石弹性性质的影响,分析地震波传播规律,建立各岩性参数、物性参数与地震速度、密度等弹性参数之间的关系.本文主要论述了半个多世纪以来,国内外地震岩石物理在岩石、流体基础研究、烃类检测等方面取得的主要进展,并分析目前国内岩石物理的研究现状、存在的问题、最新研究动向及展望.  相似文献   

6.
We explore the link between basin modelling and seismic inversion by applying different rock physics models. This study uses the E‐Dragon II data in the Gulf of Mexico. To investigate the impact of different rock physics models on the link between basin modelling and seismic inversion, we first model relationships between seismic velocities and both (1) porosity and (2) effective stress for well‐log data using published rock physics models. Then, we build 1D basin models to predict seismic velocities derived from basin modelling with different rock physics models, in a comparison with average sonic velocities measured in the wells. Finally, we examine how basin modelling outputs can be used to aid seismic inversion by providing constraints for the background low‐frequency model. For this, we run different scenarios of inverting near angle partial stack seismic data into elastic impedances to test the impact of the background model on the quality of the inversion results. The results of the study suggest that the link between basin modelling and seismic technology is a two‐way interaction in terms of potential applications, and the key to refine it is establishing a rock physics models that properly describes changes in seismic signatures reflecting changes in rock properties.  相似文献   

7.
A model-independent Hamiltonian formulation of paraxial and diffracted ray-tracing equations is presented. It is applied to asymptotic Green's function computations. The medium can have an arbitrary number of interfaces, possibly intersecting at diffracting edges and vertices. Continuously varying model parameters and anisotropy are allowed. The algorithm for elastic waves, involving accuracy control and amplitude computation, is implemented in a platform-independent object-orientated C++ package. Numerical tests and modelling examples are presented.  相似文献   

8.
Seismic Rock physics plays a bridge role between the rock moduli and physical properties of the hydrocarbon reservoirs. Prestack seismic inversion is an important method for the quantitative characterization of elasticity, physical properties, lithology and fluid properties of subsurface reservoirs. In this paper, a high order approximation of rock physics model for clastic rocks is established and one seismic AVO reflection equation characterized by the high order approximation(Jacobian and Hessian matrix) of rock moduli is derived. Besides, the contribution of porosity, shale content and fluid saturation to AVO reflectivity is analyzed. The feasibility of the proposed AVO equation is discussed in the direct estimation of rock physical properties. On the basis of this, one probabilistic AVO inversion based on differential evolution-Markov chain Monte Carlo stochastic model is proposed on the premise that the model parameters obey Gaussian mixture probability prior model. The stochastic model has both the global optimization characteristics of the differential evolution algorithm and the uncertainty analysis ability of Markov chain Monte Carlo model. Through the cross parallel of multiple Markov chains, multiple stochastic solutions of the model parameters can be obtained simultaneously, and the posterior probability density distribution of the model parameters can be simulated effectively. The posterior mean is treated as the optimal solution of the model to be inverted.Besides, the variance and confidence interval are utilized to evaluate the uncertainties of the estimated results, so as to realize the simultaneous estimation of reservoir elasticity, physical properties, discrete lithofacies and dry rock skeleton. The validity of the proposed approach is verified by theoretical tests and one real application case in eastern China.  相似文献   

9.
时移地震技术是油田开发阶段动态检测的一个重要手段.岩石物理实验室能实现模拟油气田在开采过程中其储层参数变化对岩石弹性参数的影响.本文基于岩石物理实验及地震正演模拟,分析了X气田在开采过程中其孔隙压力下降及水不断侵入情况下,进行时移地震监测的可行性及其主要影响因素.  相似文献   

10.
Seismic wave propagation through a fluid-saturated poroelastic layer might be strongly affected by media heterogeneities. Via incorporating controlled laboratory simulation experiments, we extend previous studies of time-lapse seismic effects to evaluate the wave scattering influence of the heterogeneous nature of porous permeable media and the associated amplification effects on 4D seismic response characteristics of reservoir fluid substitution. A physical model consisted of stratified thin layers of shale and porous sandstone reservoir with rock heterogeneities was built based on the geological data of a real hydrocarbon-saturated reservoir in Northeast China. Multi-surveys data of good quality were acquired by filling poroelastic reservoir layers with gas, water and oil in sequence. Experimental observations show that reservoir heterogeneity effect causes significantly magnified abnormal responses to the fluid-saturated media. Specifically, reflection signatures of the gas-filled reservoir are dramatically deviated from those of the liquid fluid-filled reservoir, compared with ones of the homogeneous media. By removing the influences unrelated to reservoir property alterations, 4D seismic estimates of travel-time and frequency-dependent characteristic are reasonably consistent with fluid variations. Nevertheless, strong 4D amplitude difference anomalies might not correspond to the regions where fluid variations occur. We also find that 4D seismic difference attributes are evident between oil- and water-filled models, whereas significant between oil- and gas-filled models. Meanwhile, rock physics modelling results reveal the predicted 4D seismic differences are obviously smaller than those calculated from seismic observations. The results in this paper, therefore, implicate that the effect of a reservoir's heterogeneous nature might be beneficial for hydrocarbons detection as well as monitoring small variations in pore fluids.  相似文献   

11.
An extension of a previously developed rock physics model is made that quantifies the relationship between the ductile fraction of a brittle/ductile binary mixture and the isotropic seismic reflection response. By making a weak scattering (Born) approximation and plane wave (eikonal) approximation, with a subsequent ordering according to the angles of incidence, singular value decomposition analyses are performed to understand the stack weightings, number of stacks, and the type of stacks that will optimally estimate two fundamental rock physics parameters – the ductile fraction and the compaction and/or diagenesis. It is concluded that the full PP stack, i.e., sum of all PP offset traces, and the “full” PS stack, i.e., linear weighted sum of PS offset traces, are the two optimal stacks needed to estimate the two rock physics parameters. They dominate over both the second‐order amplitude variation offset “gradient” stack, which is a quadratically weighted sum of PP offset traces that is effectively the far offset traces minus the near offset traces, and the higher order fourth order PP stack (even at large angles of incidence). Using this result and model‐based Bayesian inversion, the seismic detectability of the ductile fraction (shown by others to be the important rock property for the geomechanical response of unconventional reservoir fracking) is demonstrated on a model characteristic of the Marcellus shale play.  相似文献   

12.
Forward seismic modelling in the acoustic approximation, for variable velocity but constant density, is dealt with. The wave equation and the boundary conditions are represented by a volume integral equation of the Lippmann-Schwinger (LS) or Fredholm type. A T-matrix (or transition operator) approach from quantum mechanical potential scattering theory is used to derive a family of linear and nonlinear approximations (cluster expansions), as well as an exact numerical solution of the LS equation. For models of 4D anomalies involving small or moderate contrasts, the Born approximation gives identical numerical results as the first-order t-matrix approximation, but the predictions of an exact T-matrix solution can be quite different (depending on spatial extention of the perturbations). For models of fluid-saturated cavities involving large or huge contrasts, the first-order t-matrix approximation is much more accurate than the Born approximation, although it does not lead to significantly more time-consuming computations. If the spatial extention of the perturbations is not too large, it is practical to use the exact T-matrix solution which allows for arbitrary contrasts and includes all the effects of multiple scattering.  相似文献   

13.
An alternative laboratory technique to measure the elastic constants of solid samples, based on the analysis of the cross‐correlation spectra of the vibratory response of randomly excited short solid cylinders, has been recently proposed. The aim of this paper is to check the ability of the technique called passive ultrasonic interferometry to monitor fluid substitution in different rock samples. Velocity variations due to fluid substitution are easily measured if the wave attenuation in the fluid‐saturated rock is not too large (typically in rocks with few cracks or microfractures). The experimental results are in agreement with the predictions of Biot–Gassmann poroelastic theory. The effect of substituting water with a stiffer saturating fluid, such as ethylene glycol, is to increase the overall bulk modulus of the rock, without any substantial effect on shear modulus. Furthermore, the experimental results compare well with those obtained independently with conventional pulse‐transmission technique using ultrasonic transducers. However, the measured pulse‐transmission bulk moduli are slightly larger than the corresponding measured ultrasonic interferometry moduli, with the deviation increasing with increasing fluid viscosity. This can be explained by dispersion due to wave‐induced flow of the viscous fluid since pulse‐transmission experiments involve higher frequencies than ultrasonic interferometry experiments.  相似文献   

14.
Time-lapse seismic data are generally used to monitor the changes in dynamic reservoir properties such as fluid saturation and pore or effective pressure. Changes in saturation and pressure due to hydrocarbon production usually cause changes in the seismic velocities and as a consequence changes in seismic amplitudes and travel times. This work proposes a new rock physics model to describe the relation between saturation-pressure changes and seismic changes and a probabilistic workflow to quantify the changes in saturation and pressure from time-lapse seismic changes. In the first part of this work, we propose a new quadratic approximation of the rock physics model. The novelty of the proposed formulation is that the coefficients of the model parameters (i.e. the saturation-pressure changes) are functions of the porosity, initial saturation and initial pressure. The improvements in the results of the forward model are shown through some illustrative examples. In the second part of the work, we present a Bayesian inversion approach for saturation-pressure 4D inversion in which we adopt the new formulation of the rock physics approximation. The inversion results are validated using synthetic pseudo-logs and a 3D reservoir model for CO2 sequestration.  相似文献   

15.
Based on the long-wavelength approximation, a set of parallel vertical fractures embedded in periodic thin interbeds can be regarded as an equivalent orthorhombic medium. Rock physics is the basis for constructing the relationship between fracture parameters and seismic response. Seismic scattering is an effective way to inverse anisotropic parameters. In this study, we propose a reliable method for predicting the Thomsen’s weak anisotropic parameters and fracture weaknesses in an orthorhombic fractured reservoir using azimuthal pre-stack seismic data. First, considering the influence of fluid substitution in mineral matrix, porosity, fractures and anisotropic rocks, we estimate the orthorhombic anisotropic stiffness coefficients by constructing an equivalent rock physics model for fractured rocks. Further, we predict the logging elastic parameters, Thomsen’s weak parameters, and fracture weaknesses to provide the initial model constraints for the seismic inversion. Then, we derive the P-wave reflection coefficient equation for the inversion of Thomsen’s weak anisotropic parameters and fracture weaknesses. Cauchy-sparse and smoothing-model constraint regularization taken into account in a Bayesian framework, we finally develop a method of amplitude variation with angles of incidence and azimuth (AVAZ) inversion for Thomsen’s weak anisotropic parameters and fracture weaknesses, and the model parameters are estimated by using the nonlinear iteratively reweighted least squares (IRLS) strategy. Both synthetic and real examples show that the method can directly estimate the orthorhombic characteristic parameters from the azimuthally pre-stack seismic data, which provides a reliable seismic inversion method for predicting Thomsen’s weak anisotropic parameters and fracture weaknesses.  相似文献   

16.
介绍了声电效应的物理基础和利用声电效应进行隧道地震波场物理模拟的可行性研究.基于制作的人工冻砂半空间隧道物理模型和虚拟仪器技术的同一观测平台的声声观测方法与声电观测方法,采用不同的观测排列分别采集了声声直达信号、声声反射信号、声电直达信号、声电反射信号.应用时域分析和频域分析技术对所采集信号进行处理,分离出来自反射界面的纵横波直达声信号、纵横波反射声信号和纵横波直达声电转换信号、纵横渡声电转换反射信号.研究结果表明,相对于声声信号,声电信号采集受固有频率限制小,频谱明显拓宽,时间波列大为缩短,信号分辨率提高,有效的克服了窄带声传感器对隧道地震波场信号采集的影响.此外,由于声电观测中的采用电极接受,电极直径一般为2~3 mm,尺度远远小于声传感器,极大改善了声声观测中由于大尺度换能器带来的模型尺度、耦合性能等诸多方面的困难,增强了隧道地震波场物理模型观测精度.  相似文献   

17.
Rock typing and flow unit detection are more challenging in clastic reservoirs with a uniform pore system. An integrated workflow based on well logs, inverted seismic data and rock physics models is proposed and developed to address such challenges. The proposed workflow supplies a plausible reservoir model for further investigation and adds extra information. Then, this workflow has been implemented in order to define different rock types and flow units in an oilfield in the Persian Gulf, where some of these difficulties have been observed. Here, rock physics models have the leading role in our proposed workflow by providing a diagnostic framework in which we successfully differentiate three rock types with variant characteristics on the given wells. Furthermore, permeability and porosity are calculated using the available rock physics models to define several flow units. Then, we extend our investigation to the entire reservoir by means of simultaneous inversion and rock physics models. The outcomes of the study suggest that in sediments with homogeneous pore size distribution, other reservoir properties such as shale content and cementation (which have distinct effects on the elastic domain) can be used to identify rock types and flow units. These reservoir properties have more physical insights for modelling purposes and can be distinguished on seismic cube using proper rock physics models. The results illustrate that the studied reservoir mainly consists of rock type B, which is unconsolidated sands and has the characteristics of a reservoir for subsequent fluid flow unit analysis. In this regard, rock type B has been divided into six fluid units in which the first detected flow unit is considered as the cleanest unit and has the highest reservoir process speed about 4800 to 5000 mD. Here, reservoir quality decreases from flow unit 1 to flow unit 6.  相似文献   

18.
Common shot ray tracing and finite difference seismic modelling experiments were undertaken to evaluate variations in the seismic response of the Devonian Redwater reef in the Alberta Basin, Canada after replacement of native pore waters in the upper rim of the reef with CO2. This part of the reef is being evaluated for a CO2 storage project. The input geological model was based on well data and the interpretation of depth‐converted, reprocessed 2D seismic data in the area. Pre‐stack depth migration of the ray traced and finite difference synthetic data demonstrate similar seismic attributes for the Mannville, Nisku, Ireton, Cooking Lake, and Beaverhill Lake formations and clear terminations of the Upper Leduc and Middle Leduc events at the reef margin. Higher amplitudes at the base of Upper‐Leduc member are evident near the reef margin due to the higher porosity of the foreslope facies in the reef rim compared to the tidal flat lagoonal facies within the central region of the reef. Time‐lapse seismic analysis exhibits an amplitude difference of about 14% for Leduc reflections before and after CO2 saturation and a travel‐time delay through the reservoir of 1.6 ms. Both the ray tracing and finite difference approaches yielded similar results but, for this particular model, the latter provided more precise imaging of the reef margin. From the numerical study we conclude that time‐lapse surface seismic surveys should be effective in monitoring the location of the CO2 plume in the Upper Leduc Formation of the Redwater reef, although the differences in the results between the two modelling approaches are of similar order to the effects of the CO2 fluid replacement itself.  相似文献   

19.
基于流体替换技术的地震AVO属性气藏识别(英文)   总被引:1,自引:1,他引:1  
传统上,油藏地球物理工程师是基于测井数据进行流体替换,计算油藏饱和不同流体时的弹性参数,并通过地震正演模拟分析油藏饱和不同流体时的地震响应,从而进行油气藏识别研究。该研究方案为油藏研究提供了重要的弹性参数和地震响应信息,但这些信息仅限于井眼位置。对于实际油藏条件,地下储层参数都是随位置变化而变化的,如孔隙度、泥质含量和油藏厚度等,因此基于传统流体替换方案得到的流体变化地震响应信息对于油气藏识别具有很大的局限性。研究通过设定联系油藏弹性参数与孔隙度、矿物组分等参数的岩石物理模型,并基于三层地质模型,进行地震正演模拟与AVO属性计算。得到油藏孔隙度、泥质含量和储层厚度变化时地震AVO属性,并建立了饱和水储层和含气储层对应AVO属性(包括梯度与截距)之间的定量关系。建立的AVO属性之间的线性关系可以实现基于地震AVO属性直接进行流体替换。最后,应用建立的流体替换前后AVO属性之间线性方程,对模拟地震数据直接进行流体替换,并通过流体替换前后AVO属性交汇图分析实现了气藏识别。  相似文献   

20.
流体因子是一种指示储层含流体特征的常用工具,在储层流体识别中发挥着重要作用.现有的大多数流体因子除了反映孔隙流体性质以外还与孔隙度密切相关,对同一储层的高孔和低孔区域具有不同的流体敏感性,可能造成非均质储层的流体识别假象.本文提出一种消除孔隙度影响的流体因子,并将其应用于非均质储层流体识别.首先根据研究区地质特征选择并校准岩石物理模型,以此为基础优选横波阻抗IS和饱和岩石体积模量与剪切模量之比Ksatsat构建能够分离岩石骨架和孔隙流体性质的IS-Ksatsat岩石物理模板;而后通过对数域多项式拟合和归一化的方式构建孔隙度非敏感流体因子PINF(Porosity-Insensitive Normalized Fluid Factor).最后将本文提出的流体因子应用于苏里格气田非均质储层流体识别,实际测井和地震资料测试结果表明该流体因子的预测结果与测井解释结果相符,在同一储层段的高孔和低孔区域均显现出较好的应用效果,适用于非均质储层流体识别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号