首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation of a >6-km-thick succession of Cretaceous to Cenozoic sedimentary rocks in the Tajik Basin reveals that this depocentre consists of three stacked basin systems that are interpreted to reflect different mechanisms of subsidence associated with tectonics in the Pamir Mountains: a Lower to mid-Cretaceous succession, an Upper Cretaceous–Lower Eocene succession and an Eocene–Neogene succession. The Lower to mid-Cretaceous succession consists of fluvial deposits that were primarily derived from the Triassic Karakul–Mazar subduction–accretion complex in the northern Pamir. This succession is characterized by a convex-up (accelerating) subsidence curve, thickens towards the Pamir and is interpreted as a retroarc foreland basin system associated with northward subduction of Tethyan oceanic lithosphere. The Upper Cretaceous to early Eocene succession consists of fine-grained, marginal marine and sabkha deposits. The succession is characterized by a concave-up subsidence curve. Regionally extensive limestone beds in the succession are consistent with late stage thermal relaxation and relative sea-level rise following lithospheric extension, potentially in response to Tethyan slab rollback/foundering. The Upper Cretaceous–early Eocene succession is capped by a middle Eocene to early Oligocene (ca. 50–30 Ma) disconformity, which is interpreted to record the passage of a flexural forebulge. The disconformity is represented by a depositional hiatus, which is 10–30 Myr younger than estimates for the initiation of India–Asia collision and overlaps in age with the start of prograde metamorphism recorded in the Pamir gneiss domes. Overlying the disconformity, a >4-km-thick upper Eocene–Neogene succession displays a classic, coarsening upward unroofing sequence characterized by accelerating subsidence, which is interpreted as a retro-foreland basin associated with crustal thickening of the Pamir during India–Asia collision. Thus, the Tajik Basin provides an example of a long-lived composite basin in a retrowedge position that displays a sensitivity to plate margin processes. Subsidence, sediment accumulation and basin-forming mechanisms are influenced by subduction dynamics, including periods of slab-shallowing and retreat.  相似文献   

2.
《Basin Research》2018,30(4):799-815
Since the last century, several geological and geophysical studies have been developed in the Santiago Basin to understand its morphology and tectonic evolution. However, some uncertainties regarding sedimentary fill properties and possible density anomalies below the sediments/basement boundary remain. Considering that this is an area densely populated with more than 6 million inhabitants in a highly active seismotectonic environment, the physical properties of the Santiago Basin are important to study the geological and structural evolution of the Andean forearc and to characterize its seismic response and related seismic hazard. Two and three‐dimensional gravimetric models were developed, based on a database of 797 compiled and 883 newly acquired gravity stations. To produce a well‐constrained basement elevation model, a review of 499 wells and 30 transient electromagnetic soundings were used, which contribute with basement depth or minimum sedimentary thickness information. For the 2‐D modelling, a total of 49 gravimetric profiles were processed considering a homogeneous density contrast and independent regional trends. A strong positive gravity anomaly was observed in the centre of the basin, which complicated the modelling process but was carefully addressed with the available constrains. The resulting basement elevation models show complex basement geometry with, at least, eight recognizable depocenters with maximum sedimentary infill of ~ 500 m. The 3‐D density models show alignments in the basement that correlates well with important intrusive units of the Cenozoic and Mesozoic. Along with interpreted fault zones westwards and eastwards of the basin, the observations suggest a structural control of Santiago basin geometry, where recent deformation associated with the Andean contractional deformation front and old structures developed during the Cenozoic extension are superimposed to the variability of river erosion/deposition processes.  相似文献   

3.
Salt-influenced passive margins are widespread and commonly hydrocarbon-rich. However, they can be structurally complex, with their kinematic development being poorly understood. Classic models of salt tectonics divide such margins into updip extensional, mid-slope translational and downdip contractional kinematic domains. Furthermore the faults, folds, and salt walls associated with each kinematic domain are typically assumed to form perpendicular to the maximum principal stress, which in gravitationally driven systems means broadly perpendicular to base-salt dip. We use high-resolution 3D seismic reflection data from the Outer Kwanza Basin, offshore Angola to show that these models cannot explain the diversity of salt structures developing on passive margins, especially those defined by considerable relief on the base-of-salt surface. Overburden seismic-stratigraphic patterns record the basinward translation and rotation, allowing us to reconstruct the origin and evolution of the salt structures. We show structures in the transitional domain of the Outer Kwanza Basin display three dominant trends, each characterised by different structural styles: (a) salt walls perpendicular to the overall base-salt dip, (b) salt walls parallel to the base-salt dip and (c) salt walls oblique to the base-salt dip. We show that each set of walls has a unique history, with synchronous phases of extension and compression occurring in adjacent structures despite their close spatial relationship. Our analysis suggests that, in the Outer Kwanza Basin, the structural evolution of the salt and overburden is predominantly controlled by translation over relief on the base-salt surface formed above fault scarps associated with a preceding phase of rifting. Changes in the downdip volumetric flux and velocity of the salt over topographic features can cause local extension or contraction of the salt and its overburden, associated with local acceleration or deceleration of the salt, respectively. This interaction with base-salt relief creates locally variable stress fields that deform the salt and its overburden, overprinting the broader, margin-scale salt tectonics typically associated with gravity gliding and spreading.  相似文献   

4.
We present a new tectonic map focused upon the extensional style accompanying the formation of the Tyrrhenian back‐arc basin. Our basin‐wide analysis synthetizes the interpretation of vintage multichannel and single‐channel seismic profiles, integrated with modern seismic images, P‐wave velocity models, and high‐resolution morpho‐bathymetric data. Four distinct evolutionary phases of the Tyrrhenian back‐arc basin opening are further constrained, redefining the initial opening to Langhian/Serravallian time. Listric and planar normal faults and their conjugates bound a series of horst and graben, half‐graben and triangular basins. Distribution of extensional faults, active throughout the basin since Middle Miocene, allows us to define an arrangement of faults in the northern/central Tyrrhenian mainly related to a pure shear which evolved to a simple shear opening. At depth, faults accommodate over a Ductile‐Brittle Transitional zone cut by a low‐angle detachment fault. In the southern Tyrrhenian, normal, inverse and transcurrent faults appear to be related to a large shear zone located along the continental margin of the northern Sicily. Extensional style variation throughout the back‐arc basin combined with wide‐angle seismic velocity models allows to explore the relationships between shallow deformation, faults distribution throughout the basin, and crustal‐scale processes as thinning and exhumation.  相似文献   

5.
This study constrains the sediment provenance for the Late Cretaceous–Eocene strata of the Ager Basin, Spain, and reconstructs the interplay between foreland basin subsidence and sediment routing within the south-central Pyrenean foreland basin during the early phases of crustal shortening using detrital zircon (DZ) U-Pb-He double dating. Here we present and interpret 837 new DZ U-Pb ages, 113 of which are new DZ (U-Th)/He double-dated zircons. U-Pb-He double dating results allow for a clear differentiation between different foreland and hinterland sources of Variscan zircons (280–350 Ma) by leveraging the contrasting thermal histories of the Ebro Massif and Pyrenean orogen, recorded by the zircon (U-Th)/He (ZHe) ages, despite their indistinguishable U-Pb age signatures. Cretaceous–Paleocene sedimentary rocks, dominated by Variscan DZ U-Pb age components with Permian–Triassic (200–300 Ma) ZHe cooling ages, were sourced from the Ebro Massif south of the Ager Basin. A provenance shift occurred at the base of the Early Eocene Baronia Formation (ca. 53 Ma) to an eastern Pyrenean source (north-east of the Ager Basin) as evidenced by an abrupt change in paleocurrents, a change in DZ U-Pb signatures to age distributions dominated by Cambro-Silurian (420–520 Ma), Cadomian (520–700 Ma), and Proterozoic–Archean (>700 Ma) age components, and the prominent emergence of Cretaceous–Paleogene (<90 Ma) ZHe cooling ages. The Eocene Corçà Formation (ca. 50 Ma), characterized by the arrival of fully reset ZHe ages with very short lag times, signals the accumulation of sediment derived from the rapidly exhuming Pyrenean thrust sheets. While ZHe ages from the Corçà Formation are fully reset, zircon fission track (ZFT) ages preserve older inherited cooling ages, bracketing the exhumation level within the thrust sheets to ca. 6–8 km in the Early Eocene. These DZ ZHe ages yield exhumation rate estimates of ca. 0.03 km/Myr during the Late Cretaceous–Paleocene for the Ebro Massif and ca. 0.2–0.4 km/Myr during the Eocene for the eastern Pyrenees.  相似文献   

6.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

7.
Solander Basin is characterized by subduction initiation at the Pacific‐Australia plate boundary, where high biological productivity is found at the northern edge of the Antarctic Circumpolar Current. Sedimentary architecture results from tectonic influences on accommodation space, sediment supply and ocean currents (via physiography); and climate influence on ocean currents and biological productivity. We present the first seismic‐stratigraphic analysis of Solander Basin based on high‐fold seismic‐reflection data (voyage MGL1803, SISIE). Solander Trough physiography formed by Eocene rifting, but basinal strata are mostly younger than ca. 17 Ma, when we infer Puysegur Ridge formed and sheltered Solander Basin from bottom currents, and mountain growth onshore increased sediment supply. Initial inversion on the Tauru Fault started at ca. 15 Ma, but reverse faulting from 12 to ca. 8 Ma on both the Tauru and Parara Faults was likely associated with reorganization and formation of the subduction thrust. The new seabed topography forced sediment pathways to become channelized at low points or antecedent gorges. Since 5 Ma, southern Puysegur Ridge and Fiordland mountains spread out towards the east and Solander Anticline grew in response to ongoing subduction and growth of a slab. Solander Basin had high sedimentation rates because (1) it is sheltered from bottom currents by Puysegur Ridge; and (2) it has a mountainous land area that supplies sediment to its northern end. Sedimentary architecture is asymmetric due to the Subtropical Front, which moves pelagic and hemi‐pelagic sediment, including dilute parts of gravity flows, eastward and accretes contourites to the shelf south of Stewart Island. Levees, scours, drifts and ridges of folded sediment characterize western Solander Basin, whereas hemi‐pelagic drape and secondary gravity flows are found east of the meandering axial Solander Channel. The high‐resolution record of climate and tectonics that Solander Basin contains may yield excellent sites for future scientific ocean drilling.  相似文献   

8.
Minibasins are fundamental components of many salt-bearing sedimentary basins, where they may host large volumes of hydrocarbons. Although we understand the basic mechanics governing their subsidence, we know surprisingly little of how minibasins subside in three-dimensions over geological timescales, or what controls such variability. Such knowledge would improve our ability to constrain initial salt volumes in sedimentary basins, the timing of salt welding and the distribution and likely charging histories of suprasalt hydrocarbon reservoirs. We use 3D seismic reflection data from the Precaspian Basin, onshore Kazakhstan to reveal the subsidence histories of 16, Upper Permian-to-Triassic, suprasalt minibasins. These minibasins subsided into a Lower-to-Middle Permian salt layer that contained numerous relatively strong, clastic-dominated minibasins encased during an earlier, latest Permian phase of diapirism; because of this, the salt varied in thickness. Suprasalt minibasins contain a stratigraphic record of symmetric (bowl-shaped units) and then asymmetric (wedge-shaped units) subsidence, with this change in style seemingly occurring at different times in different minibasins, and most likely prior to welding. We complement our observations from natural minibasins in the Precaspian Basin with results arising from new physical sandbox models; this allows us to explore the potential controls on minibasin subsidence patterns, before assessing which of these might be applicable to our natural example. We conclude that due to uncertainties in the original spatial relationships between encased and suprasalt minibasins, and the timing of changes in style of subsidence between individual minibasins, it is unclear why such complex temporal and spatial variations in subsidence occur in the Precaspian Basin. Regardless of what controls the observed variability, we argue that vertical changes in minibasin stratigraphic architecture may not record the initial (depositional) thickness of underlying salt or the timing of salt welding; this latter point is critical when attempting to constrain the timing of potential hydraulic communication between sub-salt source rocks and suprasalt reservoirs. Furthermore, temporal changes in minibasin subsidence style will likely control suprasalt reservoir distribution and trapping style.  相似文献   

9.
Clinoforms are basinward-dipping and accreting palaeo-bathymetric profiles that record palaeo-environmental conditions and processes; thus, clinothems represent natural palaeo-archives. Here, we document shelf-edge scale clinoform sets which prograded through the entire width of an epicontinental marine basin (ca. 400 km), eventually encroaching onto the opposite basin flank, where they started to prograde upslope and landward, in defiance of gravity (“upslope-climbing clinoforms”). The giant westward-prograding Eridanos muddy shelf-edge clinothem originated from the Baltic hinterland in the Oligocene and achieved maximum regression in the Early Pleistocene, on the UK Central Graben (CG) and Mid North Sea High (MNSH), after crossing the whole North Sea mesopelagic depocentre and causing near complete basin infill. Here we integrate well and seismic data through the MNSH and CG and examine the Eridanos final heyday and demise, identifying five clinothem complexes (A1, A2, A3, B and C) and six depositional sequence boundaries (SB1 to SB6) in the Miocene-Recent section. Tectonic and climatic events drove the recent evolution of this system. Early Pleistocene climate cooling, in particular, resulted in a stepwise increase in sediment supply. This climaxed in the earliest Calabrian, following a likely Eburonian eustatic fall (=SB3) when the Eridanos clastic wedge was restructured from a 100–300 m thick compound shelf-edge and delta system to a “hybrid” shelf-edge delta at sequence boundary SB3 (ca. 1.75 Ma). In the ca. 40 kyr that followed SB3, a progradation rate peak (>1,000 m/kyr) is associated with clinoforms starting to accrete upslope, onto the east-dipping slope between CG and MNSH. This “upslope-climbing clinoform” phase was quickly followed by the maximum regression and final retreat of the Eridanos system in the Early Calabrian (=SB4), likely as the result of climate-driven changes in the Baltic hinterland and/or delta auto-retreat. To our knowledge, this contributions represents the first documentation of “upslope-climbing clinoforms” recorded in the stratigraphic record.  相似文献   

10.
11.
12.
Peter Copeland 《Basin Research》2020,32(6):1532-1546
Placing geologic events in a temporal framework is essential to telling the story of Earth history. However, clastic sedimentary rocks can be difficult to date in an absolute reference because they are made up of grains that are older than the rock in which they are now found, and some clastic rocks do not contain fossils that allow precise reference to the Geologic Timescale. For such rocks, the isotopic dating of detrital minerals can be used to estimate the time of deposition; the clastic rock must be younger than the youngest grain analysed. However, many researchers eschew this simple and straightforward approach in favour of schemes that estimate the maximum allowable depositional age as the weighted mean of the age of several grains, chosen by a variety of selection criteria. This is a mistake; in the absence of a geochemical resemblance apart from the similarity of their age, detrital grains should not be assumed to have originated in the same system and therefore any averaging or other manipulation of such data is statistically invalid and produces results without geologic significance. In the absence of interbedded volcanic rocks or index fossils, dating of detrital minerals can be an important aid in understanding the time of deposition of clastic rocks, but the best estimate will come from taking note of the youngest single grain and not by inappropriately averaging data.  相似文献   

13.
14.
位于柴达木盆地南缘的格尔木河发源于东昆仑山脉,末端注入盆地中东部的察尔汗盐湖,是该盐湖最主要的补给河流,极大地影响着该盐湖的成盐演化过程。格尔木河的主要支流——昆仑河和雪水河都是由冰川融水形成,因此,该流域内的冰川进退对河流径流量变化和谷地填充地层物源有着重要影响。该河流域内主要的填充地层为昆仑河砾岩(河流相)、纳赤台沟组(冲洪积相)和三岔河组(河湖相)。在三岔河组之上,发育了四/五级阶地,除最高的T5之外,其他均为以三岔河组为基底的内叠基座阶地。根据前人的研究,昆仑河砾岩沉积的年代为1269至1042 ka(ESR年龄);纳赤台沟组堆积于482至642 ka之间(ESR和TL年龄);三岔河组形成于355-95 ka(ESR和U系年龄)、90-16 ka(OSL年龄),T5-T1阶地基本形成于16- 4.6 ka之间。由于采用的测年方法不同,不同学者对三岔河组的形成时代存在争议,对阶地的划分也有所不同(四级或五级阶地)。但是对T5-T1阶地形成时代有较一致的观点,即末次冰消期和全新世早中期。对于格尔木河河流地貌过程的驱动因素,目前尚存在争论,大部分学者认为是气候变化驱动了该区域河流地貌的形成,但也有学者认为构造活动是主导因素。  相似文献   

15.
Platform carbonates diagenesis in salt basins could be complex due to potential alterations of fluids related and non-related to diapirism. This paper presents the diagenetic history of the Hettangian to Pliensbachian platform carbonates from the Tazoult salt wall area (central High Atlas, Morocco). Low structural relief and outcrop conditions allowed to define the entire diagenetic evolution occurred in the High Atlas diapiric basins since early stages of the diapiric activity up to their tectonic inversion. Precipitation of dolomite and calcite from both warmed marine-derived and meteoric fluids characterised diagenetic stages during Pliensbachian, when the carbonate platforms were exposed and karstified. Burial diagenesis occurred from Toarcian to Middle Jurassic, due to changes of salt-induced dynamic related to increase in siliciclastic input, fast diapir rise and rapid burial of Pliensbachian platforms. During this stage, the diapir acted as a physical barrier for fluid circulation between the core and the flanking sediments. In the carbonates and breccias flanking the structures, dolomite and calcite precipitated from basinal brines, whereas carbonate slivers located in the core of the structure, were affected by the circulation of Mn-rich fluids. The final diagenetic event is characterised by the income of meteoric fluids into the system during uplift caused by Alpine orogeny. These results highlight the relevant influence of diapirism on the diagenetic modifications in salt-related basins in terms of diagenetic events and involved fluids.  相似文献   

16.
Late Paleocene to Middle Eocene strata in the easternmost part of the Southern Pyrenees, up to 4 km thick, provide information on tectono-sedimentary evolution of faults transversal to the Pyrenean chain. To know how changes in tectonic plate processes control the structural evolution of transverse faults and the synchronous thickness and lithological distribution of sedimentary strata in a foreland basin, field observations, interpretation of 2D seismic lines tied to lithostratigraphic data of exploration wells and gravity modelling constrains were carried out. This resulted in the following two tectono-sedimentary phases in a foreland basin: first phase, dominated by transverse extensional faulting, synchronous with deposition of marine carbonates (ca. 57 to 51 Ma); and second phase, characterized by transverse contractional faulting, coeval to accumulation of marine and transitional siliciclastics (51 to 44 Ma). During the first phase, Iberia and Adria were moving to the east and west respectively. Therefore, lithospheric flexure in the easternmost part of the Iberian plate was developed due to that Sardinia was over-thrusting Iberia. Consequently, activation of E-dipping normal faults was generated giving rise to thick-deep and thin-shallow carbonate platform deposits across the hanging walls and footwalls of the transverse structures. During the second phase, a shearing interaction between Iberia and Sardinia prevailed re-activating the transverse faults as contractional structures generating thin-shelf and thick-submarine fan deposits across the hanging walls and footwalls of the transverse structures. In the transition between the first and second phases, evaporitic conditions dominated in the basin suggesting a tectonic control on basin marine restriction. The results of our study demonstrate how thickness and lithology distribution, controlled by transverse faulting in a compressional regimen, are influenced by phases related to processes affecting motions and interactions between tectonic plates and continental blocks.  相似文献   

17.
The processes and deposits of deep‐water submarine channels are known to be influenced by a wide variety of controlling factors, both allocyclic and autocyclic. However, unlike their fluvial counterparts whose dynamics are well‐studied, the factors that control the long‐term behaviour of submarine channels, particularly on slopes undergoing active deformation, remain poorly understood. We combine seismic techniques with concepts from landscape dynamics to investigate quantitatively how the growth of gravitational‐collapse structures at or near the seabed in the Niger Delta have influenced the morphology of submarine channels along their length from the shelf edge to their deep‐water counterpart. From a three dimensional (3D), time‐migrated seismic‐reflection volume, which extends over 120 km from the shelf edge to the base of slope, we mapped the present‐day geomorphic expression of two submarine channels and active structures at the seabed, and created a Digital Elevation Model (DEM). A second geomorphic surface and DEM raster—interpreted to closer approximate the most recent active channel geometries—were created through removing the thickness of hemipelagic drape across the study area. The DEM rasters were used to extract the longitudinal profiles of channel systems with seabed expression, and we evaluate the evolution of channel widths, depths and slopes at fixed intervals downslope as the channels interact with growing structures. Results show that the channel long profiles have a relatively linear form with localized steepening associated with seabed structures. We demonstrate that channel morphologies and their constituent architectural elements are sensitive to active seafloor deformation, and we use the geomorphic data to infer a likely distribution of bed shear stresses and flow velocities from the shelf edge to deep water. Our results give new insights into the erosional dynamics of submarine channels, allow us to quantify the extent to which submarine channels can keep pace with growing structures, and help us to constrain the delivery and distribution of sediment to deep‐water settings.  相似文献   

18.
19.
地貌演化是地貌学研究的重要内容之一。通过选择若干反映地貌演化特征综合性较强的指标,以30 m分辨率的DEM数据为基础,对内蒙古十大孔兑流域的地貌演化格局进行了研究。在借助灰色GM(1,1)模型对研究区地貌演化特征的空间变化规律进行分析的同时,进一步结合构造活动、岩性特征及气候演变对孔兑流域地貌景观的成因机制及形成效应进行了探讨。结果表明:十大孔兑各流域目前除罕台川为接近壮年期的幼年地貌以及壕庆河为老年期地貌之外尚处于壮年期演化阶段,孔兑流域在未来较长时期内产沙潜力仍然巨大,其入黄泥沙中来自上游砒砂岩区的粗砂及库布齐沙漠沙分别在长短期尺度上扮演着重要角色;孔兑区所受的内外营力对抗作用或侵蚀强度以西部大于东部、中上游区表现突出为特点,其原因主要与西侧地表隆升程度较高有关,而降雨的空间差异对地貌演化效应的影响相对较小;与之相反,主沟纵剖面却以东部流域演化程度较高为特点,这主要与东部地表本身抬升程度低而慢有关,其次与东部降雨量略多以及岩性特征可能也存在一定关系。此外,从地貌景观的西高东低格局的形成时间考虑,其演化和发育时间主要集中在第四纪以来,期间由于气候变化可能经历过若干次“慢-快”发育的交互变化过程。  相似文献   

20.
Geochemical and grain size analysis on the DQ (Dongqi) profile from Gonghe Basin, northeastern Qinghai-Tibetan Plateau, indicates that regional climate has experienced several cold-dry and warm-wet cycles since the last glacial maximum (LGM). The cold and dry climate dominated the region before 15.82 cal. ka B.P. due to stronger winter monsoon and weaker summer monsoon, but the climate was relatively cold and wetter prior to 21 cal. ka B.P.. In 15.82–9.5 cal. ka B.P., summer monsoon strength increased and winter monsoon tended to be weaker, implying an obvious warm climate. Specifically, the relatively cold and dry condition appeared in 14.7–13.7 cal. ka B.P. and 12.1–9.5 cal. ka B.P., respectively, while relatively warm and wet in 13.7–12.1 cal. ka B.P.. The winter and summer monsoonal strength presents frequent fluctuations in the Holocene and relatively warm and wet conditions emerged in 9.5–7.0 cal. ka B.P. due to stronger summer monsoon. From 7.0 to 5.1 cal. ka B.P., the cycle of cold-dry and warm-wet climate corresponds to frequent fluctuations of winter and summer monsoons. The climate becomes warm and wet in 5.1–2.7 cal. ka B.P., accompanying increased summer monsoon, but it tends to be cold and dry since 2.7 cal. ka B.P. due to enhanced winter monsoonal strength. In addition, the evolution of regional winter and summer monsoons is coincident with warm and cold records from the polar ice core. In other words, climatic change in the Gonghe Basin can be considered as a regional response to global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号