首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The Baltic Sea has experienced a complex geological history, with notable swings in salinity driven by changes to its connection with the Atlantic and glacio‐isostatic rebound. Sediments obtained during International Ocean Drilling Program Expedition 347 allow the study of the effects of these changes on the ecology of the Baltic in high resolution through the Holocene in areas where continuous records had not always been available. Sites M0061 and M0062, drilled in the Ångermanälven Estuary (northern Baltic Sea), contain records of Holocene‐aged sediments and microfossils. Here we present detailed records of palaeoecological and palaeoenvironmental changes to the Ångermanälven Estuary inferred from diatom, palynomorph and organic‐geochemical data. Based on diatom assemblages, the record is divided into four zones that comprise the Ancylus Lake, Littorina Sea, Post‐Littorina Sea and Recent Baltic Sea stages. The Ancylus Lake phase is initially characterized as oligotrophic, with the majority of primary productivity in the upper water column. This transition to a eutrophic state continues into the Initial Littorina Sea stage. The Initial Littorina Sea stage contains the most marine phase recorded here, as well as low surface water temperatures. These conditions end before the Littorina Sea stage, which is marked by a return to oligotrophic conditions and warmer waters of the Holocene Thermal Maximum. Glacio‐isostatic rebound leads to a shallowing of the water column, allowing for increased benthic primary productivity and stratification of the water column. The Medieval Climate Anomaly is also identified within Post‐Littorina Sea sediments. Modern Baltic sediments and evidence of human‐induced eutrophication are seen. Human influence upon the Baltic Sea begins c. 1700 cal. a BP and becomes more intense c. 215 cal. a BP.  相似文献   

2.
At the end of the Pleistocene, environmental conditions in the Baltic Basin were affected by the melting glaciers and the resultant freshwater bodies. In contrast to various seal species, there is no subfossil evidence of the harbour porpoise (Phocoena phocoena) from the early Holocene stages of the Baltic Basin. This article is an attempt to clarify the colonization of the harbour porpoise into the Baltic Sea and to reveal the ecological background of this process. All published Holocene subfossil records from the porpoise in the Baltic region were sought and supplemented with those from museums and zoological collections; 148 records document the porpoise's occurrence. The earliest records of the harbour porpoise date from the time between 9600 and 7000 cal. yr BP and originate from the early and middle Mesolithic coastal settlements of the Maglemose and Kongemose culture during the early Littorina stage. Around 7500–5700 cal. yr BP, the porpoise is recorded frequently at many localities from late Mesolithic (Ertebølle culture) and Neolithic in the coastal areas of the western Baltic Sea, as well as for the first time in the Gulfs of Bothnia and Finland. Since 4000 cal. yr BP, P. phocoena has only been recorded in the western Baltic. We suggest that immigration and dispersion of P. phocoena into the Baltic Sea was connected with the Littorina transgression beginning around 9000 cal. yr BP. The continuous influx of seawater and the associated ecological changes led to a new, very species‐rich, fish community and adequate living conditions for the harbour porpoise.  相似文献   

3.
Early to late Holocene sediments from core F80, Fårö Deep, Baltic Sea, are investigated for their palynomorph composition and dinoflagellate cyst record to map variations in sea‐surface‐water salinity and palaeoproductivity during the past 6000 years. The F80 palynomorph assemblages are subdivided into four Assemblage Zones (AZs) named A to D. The transition from the stratigraphically oldest AZ A to B reflects a marked increase in palaeoproductivity and a gradual increase in surface‐water salinity over the ~1500 years between the Initial Littorina (former Mastogloia Sea Stage) and Littorina Sea Stage. A period with maximum sea‐surface salinity is recorded within the overlying AZ C from 7200 to 5200 cal. a BP, where the process length of Operculodinium centrocarpum indicates that average salinities were probably the highest (~15–17 versus 7.5 psu today) since the last glaciation. The change from AZ C to D correlates with a shift from laminated to non‐laminated sediments, and the dinoflagellate cyst assemblages suggest that the surface‐ and the deep‐water environment altered from c. 5250 cal. a BP, with less productivity in the surface water and more oxygenated conditions in the deep water. Here we demonstrate that past regional changes in surface salinity, primary productivity and deep‐water oxygenation status in the Baltic Sea can be traced by mapping overall palynomorph composition, dinoflagellate cyst assemblages and variations in the process length of O. centrocarpum in relation to periods of laminated/non‐laminated sedimentation and proportion of organic‐matter in the sediments. An understanding of past productivity changes is particularly important to better understand present‐day environmental changes within the Baltic Sea region.  相似文献   

4.
High-resolution palaeoecological proxies of pollen, macrofossils and diatoms from an isolation lake provide a long-term record of the Holocene landscape history and shoreline displacement on the Biskopsmåla Peninsula in central Blekinge, SE Sweden. During the Preboreal/Boreal transition, the peninsula was sparsely vegetated by woodlands, along with lateglacial dwarf shrub/steppe communities. The lake basin was isolated from the shallow Yoldia Sea during this time. The regional climate improved from 10 700 cal. BP, evident as progressive expansion of Pinus-dominated mixed forest with deciduous trees. The lake basin was probably connected with the Ancylus Lake during the period 10700–10 100 cal. BP. Subsequently the basin became isolated again, corresponding to the Early Littorina Sea phase. Replacement of freshwater diatoms by those with brackish-water affinity at 8100 cal. BP indicates the initial transgression of the Littorina Sea in this basin. But not until 7500 cal. BP were brackish conditions fully established. Peaks of brackish-marine diatoms and dinoflagellates during 7500–7000 cal. BP indicate increased saltwater inflow to the Baltic Sea in response to global meltwater pulse 3. However, interactive changes in seagrass and stonewort macrofossil concentrations suggest that three minor transgressions during 5900–5300, 5000–4700 and 4400–4000 cal. BP occurred locally, associated with centennial-scale variations in regional wind pattern or coastal storminess. By 3000 cal. BP, the lake basin was finally isolated from the Baltic, and thereafter the landscape on the peninsula became gradually more influenced by human activities.  相似文献   

5.
We present evidence of a submerged early Holocene landscape off the Blekinge coastline in the Baltic Sea, dating to the Yoldia Sea and Initial Littorina Sea Stages when the water level was lower than at present. 14C dated wood remains obtained by surveillance diving and new archaeological findings in combination with bathymetric analyses and interpolations between other sites across the Baltic Sea were used for refinement of the shoreline displacement history of the region. The new results reveal a Yoldia Sea lowstand level at 20 m b.s.l., a subsequent Ancylus Lake highstand at 3 m a.s.l., and then a period of relatively stable water level at about 4 m b.s.l. during the Initial Littorina Sea Stage, several metres lower than previously concluded. The refined shoreline displacement record was used for palaeo‐reconstructions of the study area during four key periods, the Yoldia Sea lowstand phase, the Ancylus Lake transgression phase, the Ancylus Lake highstand phase and the Initial Littorina Sea lowstand phase, using elevation data and map algebra functions. A flow accumulation algorithm was used for reconstruction of the now submerged prehistoric river network in order to identify areas of high archaeological potential. Our revised shoreline displacement record, and especially its lowstand period during the Initial Littorina Sea Stage around 9500–8500 cal. a BP, raises future demands not only for specific archaeological shallow‐water surveys down to 4 m b.s.l. in the area, but also for a renewed cultural heritage management strategy. The results of this study fill an important gap in the early Holocene part of the shoreline displacement history of Blekinge, contributing to its completion since the deglaciation, which is unique for the Baltic Sea.  相似文献   

6.
《Earth》2009,92(1-4):77-92
The hypoxic zone in the Baltic Sea has increased in area about four times since 1960 and widespread oxygen deficiency has severely reduced macro benthic communities below the halocline in the Baltic Proper and the Gulf of Finland, which in turn has affected food chain dynamics, fish habitats and fisheries in the entire Baltic Sea. The cause of increased hypoxia is believed to be enhanced eutrophication through increased anthropogenic input of nutrients, such as nitrogen and phosphorus. However, the spatial variability of hypoxia on long time-scales is poorly known: and so are the driving mechanisms. We review the occurrence of hypoxia in modern time (last c. 50 years), modern historical time (AD 1950–1800) and during the more distant past (the last c. 10 000 years) and explore the role of climate variability, environmental change and human impact. We present a compilation of proxy records of hypoxia (laminated sediments) based on long sediment cores from the Baltic Sea. The cumulated results show that the deeper depressions of the Baltic Sea have experienced intermittent hypoxia during most of the Holocene and that regular laminations started to form c. 8500–7800 cal. yr BP ago, in association with the formation of a permanent halocline at the transition between the Early Littorina Sea and the Littorina Sea s. str. Laminated sediments were deposited during three main periods (i.e. between c. 8000–4000, 2000–800 cal. yr BP and subsequent to AD 1800) which overlap the Holocene Thermal Maximum (c. 9000–5000 cal. yr BP), the Medieval Warm Period (c. AD 750–1200) and the modern historical period (AD 1800 to present) and coincide with intervals of high surface salinity (at least during the Littorina s. str.) and high total organic carbon content. This study implies that there may be a correlation between climate variability in the past and the state of the marine environment, where milder and dryer periods with less freshwater run-off correspond to increased salinities and higher accumulation of organic carbon resulting in amplified hypoxia and enlarged distribution of laminated sediments. We suggest that hydrology changes in the drainage area on long time-scales have, as well as the inflow of saltier North Sea waters, controlled the deep oxic conditions in the Baltic Sea and that such changes have followed the general Holocene climate development in Northwest Europe. Increased hypoxia during the Medieval Warm Period also correlates with large-scale changes in land use that occurred in much of the Baltic Sea watershed during the early-medieval expansion. We suggest that hypoxia during this period in the Baltic Sea was not only caused by climate, but increased human impact was most likely an additional trigger. Large areas of the Baltic Sea have experienced intermittent hypoxic from at least AD 1900 with laminated sediments present in the Gotland Basin in the Baltic Proper since then and up to present time. This period coincides with the industrial revolution in Northwestern Europe which started around AD 1850, when population grew, cutting of drainage ditches intensified, and agricultural and forest industry expanded extensively.  相似文献   

7.
Rößler, D., Moros, M. & Lemke, W. 2010: The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas, 10.1111/j.1502‐3885.2010.00180.x. ISSN 0300‐9483. The Littorina transgression is one of the most pronounced environmental events in the Holocene history of the Baltic Sea. It changed the hydrographic system from the freshwater Ancylus Lake into the brackish‐marine Littorina Sea. Here, 18 cores from two western Baltic basins, Mecklenburg Bay and the Arkona Basin, were analysed. We show that, besides biological indicators, sedimentary organic carbon, C/N ratio, bulk δ13C isotope values and carbonate content display clearly the transition from Ancylus Lake to the Littorina Sea. The first appearances of benthic foraminifers, marine molluscs and ostracods represent the onset of brackish‐marine conditions in the bottom waters. Central Arkona Basin sediments display more abrupt shifts in geochemical parameters and microfossil records at the transition from Ancylus Lake to the Littorina Sea than those from Mecklenburg Bay. Mixing of reworked Ancylus material with Littorina Sea stage material was stronger in Mecklenburg Bay, resulting in less pronounced proxy parameter changes and older bulk material dates. Radiocarbon dating of both calcareous material (benthic foraminifers, mollusc shells) and bulk fractions at the transgression horizon shows large age discrepancies. Based on calcareous fossil dates it appears that marine waters began to enter Mecklenburg Bay c. 8000 cal. a BP. In the Arkona Basin the first marine signals are recorded approximately 800 years later, c. 7200 cal. a BP. This indicates a transgression pathway via the Great Belt into Mecklenburg Bay and then into the Arkona Basin.  相似文献   

8.
A high-resolution, well-dated dinoflagellate cyst record from a lagoon of the southeastern Swedish Baltic Sea reveals climate and hydrological changes during the Holocene. Marine dinoflagellate cysts occurred initially at about 8600 cal yr BP, indicating the onset of the Littorina transgression in the southeastern Swedish lowland associated with global sea level rise, and thus the opening of the Danish straits. Both the species diversity and the total accumulation rates of dinoflagellate cysts continued to increase by 7000 cal yr BP and then decreased progressively. This pattern reveals the first-order change in local sea level as a function of ice-volume-equivalent sea level rise versus isostatic land uplift. Superimposed upon this local sea level trend, well-defined fluctuations of the total accumulation rates of dinoflagellate cysts occurred on quasi-1000- and 500-yr frequency bands particularly between 7500 and 4000 cal yr BP, when the connection between the Baltic basin and the North Atlantic was broader. A close correlation of the total accumulation rates of dinoflagellate cysts with GISP2 ice core sea-salt ions suggests that fluctuations of Baltic surface conditions during the middle Holocene might have been regulated by quasi-periodic variations of the prevailing southwesterly winds, most likely through a system similar to the dipole oscillation of the modern North Atlantic atmosphere.  相似文献   

9.
The Baltic Sea (~393 000 km2) is the largest brackish sea in the world and its hydrographic and environmental conditions are strongly dependent on the frequency of saline water inflows from the North Sea. To improve our understanding of the natural variability of the Baltic Sea ecosystem detailed reconstructions of past saline water inflow changes based on palaeoecological archives are needed. Here we present a high‐resolution study of benthic foraminiferal assemblages accompanied by sediment geochemistry (loss on ignition, total organic carbon) and other microfossil data (ostracods and cladocerans) from a well‐dated 8‐m‐long gravity core taken in the Bornholm Basin. The foraminiferal diversity in the core is low and dominated by species of Elphidium. The benthic foraminiferal faunas in the central Baltic require oxic bottom water conditions and salinities >11–12 PSU. Consequently, shell abundance peaks in the record reflect frequent saline water inflow phases. The first appearance of foraminiferal tests and ostracods in the investigated sediment core is dated to c. 6.9 cal. ka BP and attributed to the first inflows of saline and oxygenated bottom waters into the Bornholm Basin during the Littorina Sea transgression. The transgression terminated the Ancylus Lake phase, reflected in the studied record by abundant cladocerans. High absolute foraminiferal abundances are found within two time intervals: (i) c. 5.5–4.0 cal. ka BP (Holocene Thermal Maximum) and (ii) c. 1.3–0.75 cal. ka BP (Medieval Climate Anomaly). Our data also show three intervals of absent or low saline water inflows: (i) c. 6.5–6.0 cal. ka BP, (ii) c. 3.0–2.3 cal. ka BP and (iii) c. 0.5–0.1 cal. ka BP (Little Ice Age). Our study demonstrates a strong effect of saline and well‐oxygenated water inflows from the Atlantic Ocean on the Baltic Sea ecosystem over millennial time scales, which is linked to the major climate transitions over the last 7 ka.  相似文献   

10.
We reconstruct the Holocene shore displacement of the Västervik-Gamlebyviken area on the southeast coast of Sweden, characterised by a maritime cultural landscape and archaeological significance since the Mesolithic. Sediment cores were retrieved from four lake basins that have been raised above sea level due to the postglacial land uplift and eustatic sea level changes after the melting of the Fennoscandian Ice Sheet. The cores were radiocarbon dated and analysed for loss on ignition and diatoms. The isolation thresholds of the basins were determined using LiDAR data. The results provide evidence for the initiation of the first Littorina Sea transgression in this area at 8.5 thousand calibrated years before present (cal. ka BP). A relative sea level rise by ∼7 m a.s.l. is recorded between 8.0 and 7.5 cal. ka BP with a highstand at ∼22 m a.s.l. between 7.5 and 6.2 cal. ka BP. These phases coincide with the second and third Littorina Sea transgressions, respectively, in the Blekinge area, southern Sweden and are consistent with the final deglaciation of North America. After 6.2 cal. ka BP, the relative sea level dropped below 22 m a.s.l., and remained at ∼20 m a.s.l. until 4.6 cal. ka BP coinciding with the fourth Littorina Sea transgression in Blekinge. From 4.6 to 4.2 cal. ka BP, the shore displacement shows a regression rate of 10 mm a−1 followed by a slowdown with a mean value of 4.6 mm a−1 until 1.6 cal. ka BP, when the relative sea level dropped below 3.3 m a.s.l. The Middle to Late Holocene highstand and other periods of minor sea level transgressions and/or higher salinity between 6.2 and 1.7 cal. ka BP are attributed to a combination of warmer climate and higher inflow of saline waters in the southern Baltic Sea due to stronger westerlies, caused by variations in the North Atlantic atmospheric patterns.  相似文献   

11.
Integrated palaeoecological studies of two fiord sediment sequences in the province of Blekinge, SE Sweden, covering the time span 11,000–5000 cal BP, reveal the timing and the environment for the Ancylus Lake/Littorina Sea transition 9800–8500 cal BP. The first ingression of saline water into the Baltic Sea through the Danish Straits occurred earlier than formerly assumed. New evidence, particularly mineral magnetic and palaeobotanical analyses, demonstrate that on the general trend of the eustatically caused Littorina transgression several minor fluctuations of the water level can be identified between 8500 and 5000 cal years BP. A distinct regression phase around 8100 cal BP is correlated with the Greenland ice-core cold event dated to 8200 ice-core years BP. This is described as a regional climatic catastrophe for the Baltic Sea region. The coastal stratigraphy is compared with the offshore stratigraphy earlier studied. A tentative shore displacement curve for Early and Middle Holocene is presented.  相似文献   

12.
This paper presents two dinoflagellate cyst records from the south‐western shelf of the Black Sea. A new site, MAR05‐13, from the Sakarya shelf is described and placed into context with site MAR02‐45, ~250 km distant on the Thracian shelf. The records provide a centennial resolution of surface water conditions in the Holocene. Analysis of the data suggests that the surface salinity of the south‐western shelf increased in a gradual and progressive manner. In the period ~11 000–9000 cal a BP the assemblages suggest surface‐water salinities between 7–13 psu. The initial arrival of euryhaline species, ~8100 cal a BP, is linked to the reconnection of the Black Sea and Marmara Sea. The suggested surface water changes related to the reconnection took approximately 1000 years. Following this initial change in assemblages, a further increase in the number of euryhaline species is noted between 5000 and 4000 cal a BP. This is linked to the establishment of more saline surface‐water conditions, close to present‐day values. The record for MAR05‐13 highlights the complexity of the changes in cyst assemblages during the mid‐Holocene. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Diatom assemblages and organic carbon records from two sediment cores located within an estuarian bay of the inner Kara Sea trace changes in Yenisei River runoff and postglacial depositional environments. Paleosalinity and sea-ice reconstructions are based on modern relationships of local diatom assemblages and summer surface-water salinity. Approximately 15,500 cal yr B.P., rivers and bogs characterized the study area. When sea level reached the 38- to 40-m paleo-isobath approximately 9300 cal yr B.P., the coring site was flooded. From 9300–9100 cal yr B.P., estuarine conditions occurred proximal to the depocenter of fluvially derived material, and salinity was <7–8. Paleosalinity increased to 11–13 by 7500 cal yr B.P., following postglacial sea-level rise and the southward shift of the Siberian coast. Sharp decreases in diatom accumulation rates, total sediment, and organic carbon also occurred, suggesting the presence of brackish conditions and greater distance between the coast and study site. Maximum paleosalinity (up to 13) was recorded between 7500 and 6000 cal yr B.P., which was likely caused by the enhanced penetration of Atlantic waters to the Kara Sea. Stepwise decreases to modern salinity levels happened over the last 6000 cal yr.  相似文献   

14.
Combined stable isotope (δ18O and δ13C) and trace element (Mg, Sr) geochemistry from bulk tufa calcite and ostracod shell calcite from an early Holocene British tufa reveal clear records of Holocene palaeoclimatic change. Variation in δ18O is caused principally by change in the isotopic composition of Holocene rainfall (recharge), itself caused mainly by change in air temperature. The δ13C variability through much of the deposit reflects increasing influence of soil‐zone CO2, owing to progressive woodland soil development. Bulk tufa Mg/Ca and Sr/Ca are controlled by their concentrations in the spring water. Importantly, Mg/Ca ratios are not related to δ18O values and thus show no temperature dependence. First‐order sympathetic relationships between δ13C values and Mg/Ca and Sr/Ca are controlled by aquifer processes (residence times, CO2 degassing and calcite dissolution/reprecipitation) and probably record intensity of palaeorainfall (recharge) effects. Stable isotope records from ostracod shells show evidence of vital effects relative to bulk tufa data. The ostracod isotopic records are markedly ‘spiky’ because the ostracods record ‘snapshots’ of relatively short duration (years), whereas the bulk tufa samples record averages of longer time periods, probably decades. The δ18O record appears to show early Holocene warming, a thermal maximum at ca. 8900 cal. yr BP and the global 8200 yr BP cold event. Combined δ13C, Mg/Ca and Sr/Ca data suggest that early Holocene warming was accompanied by decreasing rainfall intensity. The Mg/Ca data suggest that the 8200 yr BP cold event was also dry. Warmer and wetter conditions were re‐established after the 8200 yr BP cold event until the top of the preserved tufa sequence at ca. 7100 cal. yr BP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Based on geological and archaeological proxies from NW Russia and NE Estonia and on GIS‐based modelling, shore displacement during the Stone Age in the Narva‐Luga Klint Bay area in the eastern Gulf of Finland was reconstructed. The reconstructed shore displacement curve displays three regressive phases in the Baltic Sea history, interrupted by the rapid Ancylus Lake and Litorina Sea transgressions c. 10.9–10.2 cal. ka BP and c. 8.5–7.3 cal. ka BP, respectively. During the Ancylus transgression the lake level rose 9 m at an average rate of about 13 mm per year, while during the Litorina transgression the sea level rose 8 m at an average rate of about 7 mm per year. The results show that the highest shoreline of Ancylus Lake at an altitude of 8–17 m a.s.l. was formed c. 10.2 cal. ka BP and that of the Litorina Sea at an altitude of 6–14 m a.s.l., c. 7.3 cal. ka BP. The oldest traces of human activity dated to 8.5–7.9 cal. ka BP are associated with the palaeo‐Narva River in the period of low water level in the Baltic basin at the beginning of the Litorina Sea transgression. The coastal settlement associated with the Litorina Sea lagoon, presently represented by 33 Stone Age sites, developed in the area c. 7.1 cal. ka BP and existed there for more than 2000 years. Transformation from the coastal settlement back to the river settlement indicates a change from a fishing‐and‐hunting economy to farming and animal husbandry c. 4.4 cal. ka BP, coinciding with the time of the overgrowing of the lagoon in the Narva‐Luga Klint Bay area.  相似文献   

16.
The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition (~11 250 to 7500 cal. yr BP) inferred from sediment cores retrieved in Lake Petén Itzá, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by ~11 250 cal. yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11 250 to 10 350 cal. yr BP, during the Preboreal period, lithologic changes in sediments from deep‐water cores (>50 m below modern water level) indicate several wet–dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1‐4) occurred centred at 11 200, 10 900, 10 700 and 10 400 cal. yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10 350 cal. yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Petén Itzá with other records from the circum‐Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high‐latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores–Bermuda high‐pressure system. This mechanism operated on millennial‐to‐submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
We reconstruct palaeoclimate and palaeoceanography of the Ísafjarðardjúp fjord system from two cores – one from the inner fjord and one near the fjord mouth – while separating the potential overprinting of relative sea‐level (RSL) and local fjord hydrographic changes on these records. The inner fjord core (B997‐339) reflects local fjord hydrography; the outer fjord core (MD99‐2266) reflects the regional oceanic signal. Glacial marine conditions ended at ca. 10 200 cal. a BP, indicated by both ice‐rafted debris records. The other proxy records show spatial and temporal variability within the fjord system. At the inner fjord site (B997‐339) foraminiferal assemblages and the δ18O record indicate lowered RSL between ca. 10 600 and 8900 cal. a BP and document the onset of fjord water overturning at ca. 8900 cal. a BP, which obscured the climate record. At the fjord mouth (MD99‐2266) mass accumulation rates suggest lowered RSL between ca. 10 200 and 5500 cal. a BP and local freshwater and/or reduced salinities of the Irminger Current water masses affected the δ18O signal between ca. 10 200 and 7900 cal. a BP. At MD99‐2266, foraminiferal fauna record the Holocene Thermal Maximum between ca. 8000 and 5700 cal. a BP and the onset of modern oceanic circulation at ca. 7000 cal. a BP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The Baltic Sea is an intra‐continental brackish water body. Low saline surface water, the so‐called Baltic outflow current, exits the Baltic Sea through the Kattegat into the Skagerrak. Ingressions of saline oxygen‐rich bottom water enter the Baltic Sea basins via the narrow and shallow Kattegat and are of great importance for the ecological and ventilation state of the Baltic Sea. Over recent decades, progress has been made in studying Holocene changes in saline water inflow. However, reconstructions of past variations in Baltic Sea outflow changes are sparse and hampered because of the lack of suitable proxies. Here, we used the relative proportion of tetra‐unsaturated C37 ketones (C37:4 %) in long‐chain alkenones produced by coccolithophorids as a proxy for outflowing Baltic Sea water in the Skagerrak. To evaluate the applicability of the proxy, we compared the biomarker results with grain‐size records from the Kattegat and Mecklenburg Bay in addition to previously published salinity reconstructions from the Kattegat over the last 5000 years. All Skagerrak records showed an increase in C37:4 % that is accompanied by enhanced bottom water currents in the Kattegat and western Baltic Sea over the past 3500 cal. a BP, indicating an increase in Baltic Sea outflow. This probably reflects higher precipitation in the Baltic Sea catchment area owing to a re‐organization of North Atlantic atmospheric circulation with an increased influence of wintertime Westerlies over the Baltic catchment from the mid‐ to the late Holocene.  相似文献   

19.
Palaeoclimatic records derived from a variety of independent proxies provide evidence of post‐glacial changes of temperature and soil moisture in northern Fennoscandia. We use pollen percentage, pollen influx, stomatal and chironomid records from Toskaljavri, a high‐altitude lake in northern Finland, to assess how treelines and alpine vegetation there have responded to these climate changes. The evidence suggests that the cool, moist climate of the early Holocene supported birch forest in the area 9600 cal. yr BP onwards and that a rise of temperature triggered the immigration of pine at 8300 cal. yr BP. At 6100–4000 cal. yr BP altitudinal treeline in the area was formed by pine, in contrast to the modern situation where mountain birch reaches a higher elevation. Alpine vegetation also demonstrates clear changes. Plant communities typical of dry, oligotrophic heaths of northern Fennoscandia expanded during the dry climatic period at 7000–4000 cal. yr BP and decreased in response to cooler and moister conditions after 4000 cal. yr BP. Alpine plant communities favouring moist sites show an inverse pattern, expanding after a change towards moister climate after 4000 cal. yr BP. In a redundancy analysis (RDA), a statistically significant proportion of the variability in the total chironomid assemblages was captured by changes in the pollen types reflecting alpine vegetation typical of moist sites. Although chironomid community changes appeared to follow the major patterns in the alpine vegetation succession, the present study does not support a direct link between the changing treeline position and chironomid stratigraphy. Rather, the data indicate that the terrestrial and aquatic environments have each responded directly to the same ultimate cause, namely changing Holocene climate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
A study of changes in siliceous microfossil assemblages and chemical analyses in a well-dated offshore sediment core from the Bornholm Basin, southwestern Baltic Sea, is carried out with the objective of increasing knowledge of the Holocene history of the area. The core covers about 11 300 calendar years from the brackish phase of the Yoldia Sea stage to the present. The first weak marine influence in the Ancylus Lake stage is recorded about 10 100 cal. yr BP (c. 8900 14C BP), indicating a complex transition to the Litorina Sea with different phases of brackish-water inflow. The lithology, organic carbon content and C/N and C/S ratios indicate no major changes in the sedimentary environment during the Litorina-Post-Litorina Sea stages. A high productivity event recorded in the Post-Litorina Sea stage around 950 cal. yr BP correlates with the Medieval warm event. A biostratigraphical change indicating a colder climate is recorded in the sediment at about 800 cal. yr BP, which might mark the beginning of the Little Ice Age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号