首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid-chromatography interfaced with time-of-flight mass spectrometry (LC-TOF/MS) was used to separate and characterize the transformation products arising from TiO2-photocatalytic degradation of the fungicide Fenhexamid (FEX) in aqueous solution under simulated solar irradiation. Prior to identification, irradiated solutions of FEX (10 mg L−1) were concentrated by solid-phase extraction. Assignments of the mass spectra ions were aided by elemental composition calculations, comparison of structural analogues and available literature, and acquired knowledge regarding mass spectrometry of related heterocyclic compounds. The primary transformation intermediates identified were hydroxyl and/or keto-derivatives. Several positional isomers are typically produced as a consequence of the non-selectivity of the OH radical attack. Moreover, products resulted from the cleavage of the amide and NHdichlorophenol bonds were formed. Finally, cyclic - benzo[d]oxazole intermediates are also formed through an intramolecular photocyclization process and cleavage of halogen - carbon bond. In the case of the hydroxy and/or keto-derivatives, the generic fragmentation scheme obtained from the interpretation of the ESI-TOF-MS data cannot be diagnostic to precisely localize the position of the entering substituent on the FEX molecule, and thus to characterize all its possible oxygenated derivatives by assigning a plausible structure with confidence. On the basis of identified products different pathways of photocatalytic degradation of FEX were proposed and discussed.  相似文献   

2.
The photocatalytic degradation of crotamiton in aqueous solution using TiO2 was investigated. To investigate the effect of initial pH, the photodegradation behaviors of three types of pharmaceuticals were compared (crotamiton, clofibric acid, sulfamethoxazole). The degradation rates of crotamiton in the pH range 3-9 were nearly equal, but those of clofibric acid and sulfamethoxazole were affected by pH. At pH > 6.5, TiO2 particles, clofibric acid and sulfamethoxazole had negative charge, therefore, the repulsive force between TiO2 particles and anionic pharmaceuticals occurred and a low reaction rate at high pH was observed. The effect of UV intensity and TiO2 concentration on photodegradation efficiency was also investigated. Linear and logarithmical relationships between UV intensity, TiO2 concentration and the reaction rate constant were confirmed. Furthermore, the structures of photodegradation intermediates formed concomitantly with the disappearance of crotamiton were estimated. Seven intermediates were characterized by LC/MS/MS analyses, and it was assumed that the photocatalytic degradation of crotamiton was initiated by the attack of electrophilic hydroxyl radicals on aromatic rings and alkyl chains.  相似文献   

3.
1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (or p,p′-DDT) is one of the most persistent pesticides. It is resistant to breakdown in nature and cause the water contamination problem. In this work, a major objective was to demonstrate the application of N-doped TiO2 in degradation and mineralization of the p,p′-DDT under UV and visible light in aqueous solution. The N-doped TiO2 nanopowders were prepared by a simple modified sol–gel procedure using diethanolamine (DEA) as a nitrogen source. The catalyst characteristics were investigated using XRD, SEM, TEM, and XPS. The adsorption and photocatalytic oxidation of p,p′-DDT using the synthesized N-doped TiO2 under UV and visible light were conducted in a batch photocatalytic experiment. The kinetics and p,p′-DDT degradation performance of the N-doped TiO2 were evaluated. Results show that the N-doped TiO2 can degrade p,p′-DDT effectively under both UV and visible lights. The rate constant of the p,p′-DDT degradation under UV light was only 0.0121 min?1, whereas the rate constant of the p,p′-DDT degradation under visible light was 0.1282 min?1. Under visible light, the 100% degradation of p,p′-DDT were obtained from N-doped TiO2 catalyst. The reaction rate of p,p′-DDT degradation using N-doped TiO2 under visible light was sixfold higher than that under UV light. According to Langmuir-Hinshelwood model, the adsorption equilibrium constant (K) for the N-doped TiO2 under visible light was 0.03078 L mg?1, and the apparent reaction rate constant (k) was 1.3941 mg L?1-min. Major intermediates detected during the p,p′-DDT degradation were p,p′-DDE, o,p′-DDE, p,p′-DDD and p,p′-DDD. Results from this work can be applied further for the breakdown of p,p′-DDT molecule in the real contaminated water using this technology.  相似文献   

4.
Photocatalytic degradation of the herbicide, pendimethalin (PM) was investigated with BaTiO3/TiO2 UV light system in the presence of peroxide and persulphate species in aqueous medium. The nanoparticles of BaTiO3 and TiO2 were obtained by gel to crystallite conversion method. These photo catalysts are characterized by energy dispersive x-ray analysis (EDX), scanning electron microscope (SEM), x-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) adsorption isotherm and reflectance spectral studies. The quantum yields for TiO2 and BaTiO3 for the degradation reactions are 3.166 Einstein m?2 s?1 and 2.729 Einstein m?2 s?1 and catalytic efficiencies are 6.0444 × 10?7 mg?2h?1L2 and 5.403 × 10?7 mg?2h?1L2, respectively as calculated from experimental results. BaTiO3 exhibited comparable photocatalytic efficiency in the degradation of pendimethalin as the most widely used TiO2 photocatalyst. The persulphate played an important role in enhancing the rate of degradation of pendimethalin when compared to hydrogen peroxide. The degradation process of pendimethalin followed the first-order kinetics and it is in agreement with Langmuir-Hinshelwood model of surface mechanism. The reason for high stability of pendimethalin for UV-degradation even in the presence of catalyst and oxidizing agents were explored. The higher rate of degradation was observed in alkaline medium at pH 11. The degradation process was monitored by spectroscopic techniques such as ultra violet-visible (UV-Vis), infrared (IR) and gas chromatography mass spectroscopy (GC-MS). The major intermediate products identified were: N-propyl-2-nitro-6-amino-3, 4-xylidine, (2, 3-dimethyl-5-nitro-6-hydroxy amine) phenol and N-Propyl-3, 4-dimethyl-2, 6-dinitroaniline by GC-MS analysis and the probable reaction mechanism has been proposed based on these products.  相似文献   

5.
Sun C  Zhao J  Ji H  Ma W  Chen C 《Chemosphere》2012,89(4):420-425
There have been serious concerns about polybromodiphenyl ethers (PBDEs) in the environment because of their global distribution and bioaccumulation. Owing to strong hydrophobicity of PBDEs, the regular photocatalytic system, in which the substrate is solvated in the bulk solution, is not applicable to the removal of the PBDEs in water. In this work, the photocatalytic reduction degradation of decabromodiphenyl ether (BDE209), the most-used PBDEs, was investigated in aqueous system, by pre-adsorbing it on the surface of photocatalyst. It was found that the preloaded BDE209 underwent efficient reductive debromination in aqueous system under irradiation with wavelength larger than 360 nm in the presence of electron donors such as methanol. Our experiments further show that such a preloaded system exhibits different characteristics from that in the organic solution. The meta-debrominated intermediate is predominant in the present system, while the ortho-debrominated one is the main nona-BDE products in the organic solution. In addition, different from other photocatalytic system, the pH has little effect on the photocatalytic reaction. We propose that these differences are originated from the formation of overlayer of hydrophobic BDE209 to limit the motion of BDE209 and the access of water and H+/OH to the TiO2 surface.  相似文献   

6.
This paper presents an exploratory study of pulp mill bleaching effluent treatment by a biological-photocatalytic coupled system. A fungus, Trametes pubescens, immobilized on polyurethane foam was used to inoculate the biological pre-treatment system. The pretreated effluent was then exposed to a photocatalytic treatment in which two catalysts (TiO2 and ZnO) and two supports (aluminum foil and Luffa cylindrica) were tested. Catalyst characterization was carried out by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Information about crystalline structure, chemical composition, morphology, homogeneity and distribution on the support surface area was obtained. The overall biological-photocatalytic coupled system achieved degradation of 96% of initial total organic carbon (TOC), 97% of 2-chlorophenol (2-CP), 90% of 2,4-dichlorophenol (2,4-CP) and 99% of 2,4,6-trichlorophenol (2,4,6-TCP). This approach of synergistic coupling of T. pubescens and a semiconductor photocatalyst appears to be a viable alternative for the treatment of these non-biodegradable effluents.  相似文献   

7.
以工业有机颜料C.I.颜料红254(DPP254)为敏化剂,通过溶剂热法对纯TiO2进行改性,得到复合光催化剂DPP254-TiO2。并通过XRD、SEM、UV-Vis DRS和N2吸附-脱附(BET和BJH)等测试手段对DPP254-TiO2进行了表征。以罗丹明B(RhB)为目标降解物,研究了DPP254-TiO2在可见光下对有机污染物的光催化降解性能。同时考察了DPP254含量、反应时间、RhB初始浓度和催化剂浓度等因素对RhB降解速率的影响。结果表明,改性后的催化剂光响应范围由紫外光区拓宽到可见光区。对其光催化反应机理进行了探讨。催化剂重复使用4次,活性没有明显降低,说明催化剂具有很好的稳定性。  相似文献   

8.
模拟可见光下掺杂TiO2对甲醛溶液光催化降解   总被引:5,自引:1,他引:5  
张浩  赵江平 《环境工程学报》2010,4(10):2259-2262
模拟自然条件下的可见光,以甲醛的光催化降解为探针反应,评价了通过溶胶凝胶法分别制备的8种(银Ag、铜Cu、铁Fe、钨W、铈Ce、镧La、硫S、氯Cl)掺杂TiO2纳米晶体的光催化活性及对甲醛水溶液的去除效果。用X射线衍射、激光粒度分析和紫外-可见分光光谱表征了掺杂纳米TiO2的微晶尺寸、晶体结构与光学性能。结果表明:Ce离子尽管有较大的半径但是主要还是掺杂到晶格中,Ce掺杂可以促进TiO2由非正分锐钛矿相向锐钛矿相和金红石相的转变,抑制载流子复合,使TiO2的光吸收带边发生红移且有利于对可见光的吸收,从而使Ce掺杂TiO2在模拟可见光下光催化甲醛水溶液的能力得到明显提高。  相似文献   

9.
通过X-射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)和紫外可见光漫反射谱(UV-vis)对碳纳米管/二氧化钛/壳聚糖复合薄膜的晶体结构和形貌进行表征,以室内空气典型污染物气相苯为模型反应物,研究碳纳米管/二氧化钛/壳聚糖催化薄膜的光催化活性及其对苯的光降解机理。结果表明,制备的碳纳米管/二氧化钛/壳聚糖催化薄膜所具有的良好催化活性归功于碳纳米管、二氧化钛和壳聚糖三者的协调效应;气相苯光降解产生的主要中间产物是乙酸乙酯和十一烷,以及少量的丙烯醛、4-羰基-甲基-苯乙酮、十二烷烃、2,4,-二叔丁基苯酚、二十一烷烃。根据红外光谱分析与GC/MS分析结果,进一步提出了气相苯的降解机理过程。  相似文献   

10.
在低于100℃温度条件下,采用溶胶-凝胶法以钛酸正丁酯为钛源,碘酸钾为碘源,制备了I掺杂纳米TiO2催化剂(I-TiO2),运用X-射线衍射(XRD)、透射电镜(TEM)及X-射线光电子能谱(XPS)等对催化剂进行表征,结果表明,TiO2及I-TiO2催化剂均为锐钛矿,I吸附并包裹在TiO2表面或以间隙进入的形式存在,并未进入TiO2晶格。通过在可见光照射下(λ>420 nm)以罗丹明B(Rhodamine B,RhB)的光催化降解为探针反应研究了在不同条件下制备催化剂的催化性能,结果表明,掺杂比为nI:nTi=0.05∶1,焙烧温度为400℃,降解介质条件pH=7时,I-TiO2光催化活性明显优于未掺杂的TiO2。光催化降解过程通过红外光谱(IR),总有机碳(TOC)跟踪测定,比较了TiO2掺杂前后降解RhB和对氯苯酚(4-CP)的光催化特性差异;同时采用苯甲酸荧光光度法跟踪测定体系中的氧化物种,表明在可见光下,I-TiO2光催化体系中产生.OH高活性氧化物种从而氧化降解目标化合物。  相似文献   

11.
This study has been undertaken to investigate the relationship between Pd oxidation states on TiO2 photocatalysts and their photocatalytic oxidation behaviors of NO. Three types of Pd-modified TiO2 with different Pd oxidation states were prepared by wet impregnation method, neutralization method and photodeposition method, respectively. And these Pd-modified photocatalysts were characterized by X-ray diffraction analysis, X-ray photoelectron spectrum analysis (XPS), UV–Vis diffuse reflectance spectra and temperature programmed desorption (TPD). It was found from XPS results that the dominant oxidation states of Pd on these Pd-modified TiO2 catalysts were Pd2+, PdO, and Pd0, respectively. NO-TPD results showed that the NO adsorption capacity was improved greatly by the modification of Pd2+ ions. The activity tests showed that Pd-modified TiO2 by a wet impregnation method increased photocatalytic activity compared to pure TiO2 (Degussa P25). It was concluded that Pd2+ ions on as-prepared TiO2 catalysts provided key contributions to the improvement of photocatalytic activity. However, Pd0 and PdO deposits on TiO2 almost had no positive effect on NO oxidation. The mechanism of photocatalytic oxidation of NO in gas phase over Pd-modified TiO2 was also proposed.  相似文献   

12.
Photolytic and photocatalytic degradation of 6-chloronicotinic acid   总被引:1,自引:0,他引:1  
This work describes for the first time the photolytic and photocatalytic degradation of 6-chloronicotinic acid (6CNA) in double deionised water, which is a degradation product of neonicotinoid insecticides imidacloprid and acetamiprid, and it is known to appear in different environmental matrices. Photolytic experiments were performed with three UVA (ultraviolet A) polychromatic fluorescent lamps with broad maximum at 355 nm, while photocatalytic experiments were performed using immobilised titanium dioxide (TiO2) on six glass slides in the spinning basket inside a photocatalytic quartz cell under similar irradiation conditions. Photolytic degradation revealed no change in concentration of 6CNA within 120 min of irradiation, while the photocatalytic degradation within 120 min, obeyed first-order kinetics. The observed disappearance rate constant was k = 0.011 ± 0.001 min−1 and t1/2 was 63.1 ± 5.5 min. Mineralisation rate was estimated through total organic carbon (TOC) and measurements revealed no carbon removal in case of photolysis after 120 min of exposure. However in photocatalytic experiments 46 ± 7% mineralisation was achieved within 120 min of irradiation. Nevertheless, the removal of total nitrogen (TN) was not observed across all experiments. Ion chromatographic analyses indicated transformation of chlorine atoms to chloride and increase of nitrate(V) ions only via photocatalytic experiments. Efficiency of selected advanced oxidation process (AOP) was investigated through toxicity assessment with Vibrio fischeri luminescent bacteria and revealed higher adverse effects of treated samples on bacteria following photocatalytic degradation in spite of the fact that higher mineralisation was achieved. New hydroxylated product generated in photocatalytic experiments with TiO2, was confirmed with liquid chromatography-electro spray ionisation mass spectrometry (LC-ESI-MS/MS) analyses, gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (1H NMR).  相似文献   

13.
以TiO2为催化剂、紫外灯为光源对乳酸进行光催化降解实验,考察了乳酸初始浓度、TiO2用量、反应时间、曝气方式等因素对乳酸降解率的影响,并在此基础上应用正交实验对降解条件进行优化,同时对乳酸的降解机理进行了探索研究.实验结果表明:以300 W紫外汞灯为光源,在乳酸初始浓度为O.5 g/L、TiO2量为0.20 g/L、...  相似文献   

14.
The present work involves the photocatalytic mineralization of glyphosate on a plug flow reactor by UV/TiO2. The effect of catalyst loading shows an optimal value (0.4 g L?1) which is necessary to mineralize glyphosate. The kinetic rate of glyphosate mineralization decreases with the increasing initial concentration of glyphosate, and the data can be described using the first-order model. An alkaline environment is conducive to glyphosate mineralization. The mineralization efficiency increases with elevated flow rate to 114 mL min?1, which is followed by a decrease with a further increase in flow rate due to the reduction of the residence time. The presence of external oxidants (K2S2O8, H2O2 and KBrO3) and photosencitizer (humic acid) can significantly enhance glyphosate mineralization. Photocatalysis oxidation ability of the three studied oxidants decrease in the order of: S2O8 2? > BrO3 ? > H2O2. Finally, the Langmuir–Hinshelwood (L-H) model was used to rationalize the mechanisms of reactions occurring on TiO2 surfaces and L-H model constants were also determined.  相似文献   

15.
Triclopyr is a widely used pesticide which is non-biodegradable and enters aquatic systems. The ozone facilitated photocatalyzed degradation and mineralization of Triclopyr using Au-loaded titania as heterogeneous catalyst is reported. The oxidative degradation activity of the hazardous pesticide was investigated at pH 7.8 under varied reaction conditions, including in presence and absence of ozone, titania alone, in presence and absence of light and with different loadings of Au on support. Photocatalysis with 2% Au/TiO2 in the presence of ozone yielded 100% degradation of Triclopyr in 2 h. The extent of degradation of pesticide and its mineralization were confirmed by GC-MS. For 10 mg/L of Triclopyr, 0.1 g/L of catalyst was found to be the optimum for mineralization. Results show that photocatalyzed ozonation with Au/TiO2 as catalyst is a very effective for its removal. No leaching of Au was observed in triplicate runs. Catalyst was fully recoverable and reusable with no loss of activity.  相似文献   

16.
The ozone initiated oxidation of 1,3,7-trimethylxanthine (caffeine), commonly found in wastewaters as model compound is reported using cerium (Ce)/titanium dioxide (TiO2) as catalyst. The effect of pH and loading of ceria on titania were investigated. Effect of reaction conditions on degradation of caffeine based on their pseudo first-order rate constants were compared. The combination of catalyst Ce-TiO2 and ozone aeration significantly enhanced the degradation of caffeine compared to uncatalysed ozonation. The oxidation of caffeine ensued via the free radical mechanism, through enhanced ozone decomposition into OH radicals. Ce/TiO2(0.5?wt%) showed good activity in degradation of caffeine at pH 6, in both natural stream and river water samples showing about 60% total organic carbon removal in 2?h ozonation period. Using liquid chromatography-mass spectroscopy, degradation products were analysed. A reaction intermediate and one final product were positively identified. Nano-catalysts with different loadings of Ce on TiO2 synthesized by sol-gel route were characterized by scanning electron microscope, transmission electron microscopy, BET and powder X-ray diffraction spectrum techniques. The results showed that the material retained a highly ordered mesoporous structure and possessed large surface area.  相似文献   

17.
采用溶胶-凝胶法在钛片上涂覆TiO2薄膜为电极,自行设计组装光电催化反应器,对酸性紫红染料废水进行光电脱色处理,探讨了光电反应的协同性并研究了初始染料浓度、电压、pH和电解质浓度对脱色反应的影响。结果表明,光化学催化和电化学氧化具有协同效应,单一紫外光催化和单一电催化酸性紫红的脱色率分别为44.27%和13.12%,而光电催化(紫外、外加电压10 V)的脱色率达到77.18%。初始浓度较低、电压适中、pH偏碱性时,酸性紫红废水脱色率较高;电解质对脱色反应有促进作用,且浓度越高,酸性紫红脱色率越高。  相似文献   

18.

The present work mainly deals with photocatalytic degradation of a herbicide, erioglaucine, in water in the presence of TiO2 nanoparticles (Degussa P-25) under ultraviolet (UV) light illumination (30 W). The degradation rate of erioglaucine was not so high when the photolysis was carried out in the absence of TiO2 and it was negligible in the absence of UV light. We have studied the influence of the basic photocatalytic parameters such as pH of the solution, amount of TiO2, irradiation time and initial concentration of erioglaucine on the photodegradation efficiency of erioglaucine. A kinetic model is applied for the photocatalytic oxidation by the UV/TiO2 system. Experimental results indicated that the photocatalytic degradation process could be explained in terms of the Langmuir–Hinshelwood kinetic model. The values of the adsorption equilibrium constant, K, and the second order kinetic rate constant, k, were 0.116 ppm? 1 and 0.984 ppm min? 1, respectively. In this work, we also compared the reactivity between the commercial TiO2 Degussa P-25 and a rutile TiO2. The photocatalytic activities of both photocatalysts were tested using the herbicide solution. We have noticed that photodegradation efficiency was different between both of them. The higher photoactivity of Degussa P-25 compared to that of rutile TiO2 for the photodegradation of erioglaucine may be due to higher hydroxyl content, higher surface area, nano-size and crystallinity of the Degussa P-25. Our results also showed that the UV/TiO2 process with Degussa P-25 as photocatalyst was appropriate as the effective treatment method for removal of erioglaucine from a real wastewater. The electrical energy consumption per order of magnitude for photocatalytic degradation of erioglaucine was lower with Degussa P-25 than in the presence of rutile TiO2.  相似文献   

19.
陈娟  陈灏 《环境工程学报》2008,2(7):886-890
考察了镧负载改性TiO2催化剂在太阳光下降解微囊藻毒素LR (MCLR)的效果及其影响因素。结果表明,镧负载改性的TiO2可显著增加MCLR在TiO2表面的吸附量,同时提高MCLR在太阳光下的降解率。随着镧负载量的增加,太阳光下MCLR降解率可从65%提高到95%,pH降低可促进MCLR的降解。改性TiO2对藻毒素的降解存在最佳投加量,实验结果表明,在pH=6,MCLR初始浓度为2 mg/L,0.001-La-TiO2的最佳投量为0.5 g/L,在3 600 μW/cm2太阳光下照射30 min,降解率可达97%。  相似文献   

20.
研究了纳米TiO2/活性炭复合光催化剂对空气中典型污染气体甲醛的光催化降解特性。采用扫描电镜(SEM)表征复合催化剂的表面特征。结果显示,经改性后的纳米TiO2在复合催化剂表面分布均匀,呈球状。对甲醛气体的降解实验显示TiO2负载量为1%时对甲醛的去除效果最好,6 h去除率为61.7%。结果显示复合催化剂把甲醛气体分解成CO2,可以直接排空,无二次污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号