首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨雁  黄璐  王维  陆文俊  陆祖良 《计量学报》2020,41(3):284-289
基于一种交流电桥自动辅助平衡方法,中国计量科学研究院(NIM)研制了新一代二端对电容电桥装置。电桥采用固定比率的感应耦合比率臂电桥,通过复用比率,用单一电桥即实现了计算电容过渡和电容10:1传递;采用一种改进的靴带法实现电桥感应比率臂比率的精确校验。该装置用于电容单位的量值复现和标准电容器的高准度量值传递。利用新一代二端对电容电桥装置,可从计算电容装置复现1 pF电容值,并实现电容 1~100 pF的十进制量值传递,电容量值传递相对标准不确定度可达5×10-9(1592 Hz)。采用该电桥参加了10 pF和100 pF电容国际关键比对(CCEM.K4-2017),中国比对成绩优异,数据均非常接近关键比对参考值(KCRV),其中100 pF的结果最接近KCRV,与KCRV取得了很好的一致性,从而获得国际互认。  相似文献   

2.
提出了一种新型多纤维陶瓷电容器(MFC)。MFC由众多纤维电容器并联而成,而每根纤维电容器由内电极(导电纤维)、介电层和外电极构成。理论分析表明,当纤维直径与介电层厚度相匹配时,MFC的电容比多层电容器(MLC)的电容大,而且MFC也具有更优异的抗击穿性能。  相似文献   

3.
超级电容器导电聚合物电极材料的研究进展   总被引:2,自引:0,他引:2  
导电聚合物是一类重要的超级电容器电极材料,其电容主要来自于法拉第准电容.采用不同掺杂方式的导电性聚合物(n型或p型)作为电极材料使相应的超级电容器分为3种基本类型,这3种类型的超级电容器各具有不同的导电结构及特性.介绍了超级电容器导电聚合物的工作原理和导电聚合物电极材料的研究进展.  相似文献   

4.
四端对标准电容器频率特性的校验理论及测定方法   总被引:3,自引:0,他引:3  
戴冬雪  阮永顺  王祁 《计量学报》2005,26(3):263-266
对四端对阻抗测量仪在其使用频段内进行校准,须确定四端对标准电容器的频率特性。空气介质四端对标准电容器频率特性的校验理论,是从四端对标准器阻抗矩阵出发,按四端对导纳定义进行简化后,再用网络分析仪在较高频率对有关参数进行测定,分析计算后将确定的频率特性曲线回归到100kHz~13MHz范围内。给出标准电寄器1000pF、100pF、10pF、1pF的频率特性曲线及不确定度分析,它将作为阻抗高频段计量的溯源依据。  相似文献   

5.
以纸纤维(PF)为基体,晶须状碳纳米管(WCNT)和活性炭(AC)为功能添加物,采用真空抽滤法制成PF/WCNT/AC三元无金属集流体复合电极。利用扫描电子显微镜(SEM)、X射线衍射(XRD)光谱仪、拉曼(Raman)光谱仪对其进行表征和分析,采用两电极测试体系对组装的超级电容器性能进行测试。结果表明,与涂布法所得的铝箔集流体(Al/WCNT/AC)电极相比,由PF/WCNT/AC三元复合电极组装的超级电容器比电容大幅提高,并展现出良好的充放电性能。在1mV/s的扫描速率下比电容达325F/g,几乎是Al/WCNT/AC超级电容器(108.7F/g)的3倍。PF/WCNT/AC超级电容器在0.4A/g电流密度下的比电容为95F/g,在3.2A/g电流密度下的比能量与比功率分别为36.76 Wh/kg、5.52kW/kg。  相似文献   

6.
以硫酸锰(MnSO_4)和高锰酸钾(KMnO_4)为反应物,以碳纳米管(CNTs)为载体,通过液相合成法制备纳米MnO_2/CNTs复合材料,将其按一定比例与活性炭均匀复合制备AC/MnO_2/CNTs三元复合电极并组装成电容器。采用X射线衍射(XRD)和透射电镜(TEM)对复合材料成分、晶型、形貌进行表征,并通过恒流充放电、循环伏安和交流阻抗测试研究AC/MnO_2/CNTs复合电容器电化学性能。结果表明:复合电容器在1mol/L(NH_4)_2SO_4电解液中具有良好的充放电可逆性,其比电容随MnO_2含量增加呈现先增大后减小的趋势,当MnO_2/CNTs含量为30%时,电容值达到最高,为528F/g。  相似文献   

7.
纳米NiO/C复合电极电化学电容特性的研究   总被引:1,自引:0,他引:1  
为满足高性能电化学电容器发展的需要,采用循环伏安法(CV)和电化学阻抗谱(EIS)研究了纳米NiO/C复合电极在KOH溶液中的电化学电容特性。这种纳米NiO/C复合电极材料是经热解柠檬酸镍凝胶制得的,由大约85%的纳米NiO和15%的纳米C组成,粉体的比表面积为181m^2/g,颗粒粒径〈30nm,微孔直径分布在4~10nm。结果表明,纳米NiO/C复合电极的比电容受KOH浓度和扫描速度的影响,高的电解质浓度和低的扫描速度有助于获得高的比电容。电极的电化学过程研究显示出法拉第反应和双电层特性,因而电极电容由法拉第准电容和双电层电容组成,电极比容量可达116.4F/g。由纳米NiO/C复合电极组成的电容器,其比能量达13.2kJ/kg,比功率达1.6kW/kg,且具有良好的循环稳定性。  相似文献   

8.
以西瓜皮的炭化料为前驱体,KOH为活化剂(碱炭比1∶1~4∶1),在800℃下活化1h制备超级电容器用活性炭电极材料。利用低温N2吸附法对活性炭的孔结构进行表征,采用恒流充放电、循环伏安和漏电流等测试方法评价了其在无机体系(3mol·L-1 KOH)中的电化学性能。结果表明,4种活性炭均属层次孔炭,孔径集中分布在0.8~4.5nm之间,包括0.8~2.0nm之间的微孔和2.0~4.5nm之间的中孔;比表面积、总孔容和中孔率最高分别达2480m2·g-1、1.521cm3·g-1和78.8%。4种活性炭电极材料的充放电可逆性良好,具有典型的双电层电容特性,质量比电容、比电容保持率最高分别达258F·g-1、84.9%,是一种理想的电化学电容器用活性炭电极材料。  相似文献   

9.
采用生物高分子明胶为氮源,与间苯二酚和甲醛共聚,由共聚物热解制得三维网状含氮多孔炭,并考察其作为超级电容器电极材料的电化学性能。结果表明,明胶通过共聚反应连接到酚醛树脂骨架中,由于其能降低反应体系的界面能,改变了聚合物的形貌,所得炭材料具有由较小颗粒交联而成的三维网状结构;改变明胶掺入量,多孔炭的氮含量可从1.04%增加至2.03%;由于氮掺杂作用,将其用作超级电容器电极材料,其电容值较单纯酚醛聚合体系得到的炭样品增加一倍,由76 F·g~(-1)增至149 F·g~(-1),且电容值随着氮含量的增加而增加;当氮含量增至2.03%时,受其比表面积限制,其电容值不再增加,经水活化,材料比表面积达1 174 m~2·g~(-1),氮含量为1.51%,其电容值达228 F·g~(-1)。  相似文献   

10.
《功能材料》2021,52(5)
高性能超级电容器电极材料的开发对于缓解当前的能源危机势在必行,设计和优化混合过渡金属氧化物并研究电化学性能和循环寿命对于超级电容器的实际应用至关重要。在已开发的混合过渡金属氧化物中,由于电活性材料的导电率差并且与电解质的接触受限制,大大限制了所制备电极的电化学性能。我们在本文中提出了一种合成石墨烯/CoMoO_4纳米片的有利设计,使活性材料均匀生长在三维石墨烯泡沫的网状骨架上,充分提高了活性材料的利用率,其独特的结构也增加了电活性材料与电解质界面之间的接触,使赝电容反应充分发生。由于石墨烯的高电子传输速率和CoMoO_4纳米片的高活性,三维复合电极具有出色的电化学性能,具有相对较高的面积比电容(在1 mA cm~(-2)下为2 737 mF cm~(-2))和出色的循环稳定性(在10 mA cm~(-2)下进行4000次循环后,保留原始比电容的81.76%)。这些出色的结果表明,石墨烯/CoMoO_4纳米片复合材料具有巨大的潜力,可作为高性能超级电容器的电极材料。  相似文献   

11.
金马  卢娜 《中国科技博览》2013,(16):590-590
本文提出利用电容的充放电原理,用恒流源对小电容进行充、放电,利用被测电容电压与标准电容电压的差来确定被测电容的值,并用Pspice/OrCAD对其进行验证。实验结果表明对1pF-50pF的小电容在采样频率为100kHz进行测量时误差在妣以内。是一种采样频率高、精度高、测量方法简单的小电容测量电路。  相似文献   

12.
将金丝插入盛有氧化石墨烯和抗坏血酸混合物的毛细管中,密封条件下于30℃反应48小时制得具有三维网络结构的还原氧化石墨烯/金线(r GON/WAu)柔性复合纤维。通过扫描电子显微镜观测,发现r GON/WAu复合纤维由三维网络结构的还原氧化石墨烯包裹在金丝周围形成。用电化学测试方法详细研究了r GON/WAu复合纤维的电容性能,结果表明:当扫描速度为1 mV s~(-1)时,纤维的长度和质量比电容分别可达5.47 mF cm~(-1)和176.7 Fg~(-1)。以磷酸/聚乙烯醇为凝胶电解质,r GON/WAu为电极组装的对称全固态柔性电化学电容器的长度、面积和体积比电容分别可达到2.06 mF cm~(-1)、6.87 mF cm~(-2)和411.9 mF cm~(-3),其功率密度为0.017 mW cm~(-2)时,能量密度可达9.48×10~(-4)mWh cm~(-2)。此外,以r GON/WAu为电极的柔性超级电容器还具有很好的稳定性和柔性,三个柔性电容器串联充电后可以点亮电压阈值为2.5 V的发光二极管。  相似文献   

13.
采用电化学沉积工艺,在MEMS超级电容器的三维结构集流体上制备出聚吡咯(PPy)、聚吡咯/碳纳米管(PPy/CNT)、聚吡咯/石墨烯(PPy/GR)三种类型的膜电极。采用SEM对三种膜电极进行形貌观察,采用循环伏安、交流阻抗、恒电流充放电和循环充放电研究三种膜电极的电化学电容性能。结果表明,复合电极的微观结构稳定,复合薄膜和集流体之间的结合力大;基于三种膜电极的MEMS超级电容器电容量依次增大,阻抗依次减小,放电电流为1 mA时,比电容分别达到7.0、8.0、8.3 mF/cm2,经过5 000次恒流充放电循环后,电容器的比电容分别保持了原来的72.9%、85.0%和89.2%。在PPy电极中引入CNT或GR后,MEMS超级电容器的电化学和膜电极结构稳定性可得到明显改善。  相似文献   

14.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了PySH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

15.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了Py-SH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

16.
以石油焦为原料化学活化制得活性炭(Activated carbon,AC),在此AC中加入不同量的多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)作为超级电容器电极材料.依据交流阻抗谱中阻抗与电容关系,区分有效容量和内阻造成的能量损失,评价了超级电容器的性能.结果表明:加入质量分数3%~15% MWCNTs的AC电极,实部电容高于纯AC电极,虚部电容则随着MWCNTs添加量的增加而显著降低.且其实部电容分数随MWCNTs加入量的增加呈上升趋势,虚部电容分数则随MWCNTs加入量增加而降低.在AC电极中加入MWCNTs,在降低电极内阻的同时可有效提高超级电容器的储能效率,并降低弛豫时间,提高其频率特性,改善电容行为.  相似文献   

17.
人们在享受经济快速发展带来的好处的同时,煤、石油等也化石燃料的燃烧也带来了一系列环境问题。那么在这样的时代背景下,发展可再生资源显得尤为重要。超级电容器,一种新型储能元件,由于其优良的性能被广泛研究。电极材料,超级电容器的重要组成部分,它会直接影响超级电容器的性能。本文利用两步水热法在泡沫镍表面成功制备出了电极材料Ni O@Ni_3S_2与Mn/Ni O@Ni_3S_2。通过电化学分析,我们发现添加了少量Mn后电极材料的电容提高了。详细地,在电流密度为5 m A cm~(-2)时,Mn/Ni O@Ni_3S_2电极的电容为3.94 F cm~(-2),而Ni O@Ni_3S_2的为2.59 F cm~(-2),且前者的电容值约为后者的1.5倍。在循环了1000圈后,我们发现Mn/Ni O@Ni_3S_2的电容保持率为82.1%,这说明掺Mn后的电极材料有良好的循环稳定性。根据以上的分析,我们可以确定Mn/Ni O@Ni_3S_2比Ni O@Ni_3S_2更适合于做超级电容器的电极材料。从某种程度上来说,这个实验也可以为以后遇到类似的改善电极材料的电容提供参考。  相似文献   

18.
以中间相炭微球为原料,NaOH和FeCl_3分别作为活化剂和催化剂,一步活化催化法制备了一种石墨质多孔炭。将该石墨质多孔炭作为超级电容器的电极材料,研究了其在1 M LiPF_6/EC∶DEC(v/v_(=1)∶1)、1 M Et_4 NBF_4/PC(v/v_(=1)∶1)和1M[BMIM]BF_4/AN(v/v_(=1∶)1)三种不同电解液中的电化学性能。研究表明,该石墨质多孔炭在三种电解液中均表现出优异的电化学行为,在电解液Et_4NBF_4/PC中性能最优,是一种理想的电容型材料。  相似文献   

19.
为得到高电容特性的超级电容器电极材料,以廉价的可溶性淀粉为碳源采用配位-热解法制备了纳米级多孔石墨化碳电极材料。分别利用透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)和N2吸附-脱附(BET)等测试手段对材料的微观结构进行表征,结果表明,合成材料具有较大的比表面积(1 187m2/g)和高的石墨化程度。并对合成材料进行了电化学性能测试,测试结果说明,该材料展示了优异的电容特性,在1A/g时,其电容高达249F/g,5 000次循环后,其比电容仍为初始电容的99.97%。当以此材料为电极组装成电容器器件时,在功率密度为10 500 W/kg下其能量密度仍为46.79 Wh/kg。因此,这种方法制备的纳米级多孔石墨化碳是一种有潜力的超电材料。  相似文献   

20.
超级电容器因其高效、快捷和循环稳定性好等因素成为应用广泛的新型储能装置,而电极材料是制约其发展的关键性问题.采用五氯化铌为原料,利用静电纺丝结合氨气还原氮化技术制备多孔氮化铌纤维,将其作为电极材料制备成Nb4 N5||Nb4 N5对称型扣式电容,并在Na2 SO4水系电解液中加入NaHCO3以提升电极材料的电化学性能.结果表明:制备的氮化铌纤维呈四方相,连续且表面呈现多孔化.多孔氮化铌电极存在双电层及赝电容储能两种机制,当添加15 mmol·dm-3的NaHCO3时,超级电容器比电容提高到187 F·g-1,其中,阻抗R1和扩散阻抗WR分别缩小为1.22Ω和1.47Ω,同时体系离子电导率提高,载流子浓度增大到6.58×1024 cm3,弛豫时间缩短至0.24 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号