首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
 An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben–Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben–Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Received, April 1997 · Revised, January 1998 · Accepted, January 1998  相似文献   

2.
This paper refers to the development of a conceptual model for the management of a coastal aquifer in northern Greece. The research presents the interpretation and analysis of the quantitative (groundwater level recordings and design of piezometric maps) regime and the formation of the upcone within the area of investigation. Additionally it provides the elaboration of the results of chemical analyses of groundwater samples (physicochemical parameters, major chemical constituents and heavy metals and trace elements) of the area which were taken in three successive irrigation periods (July–August 2003, July–August 2004 and July 2005), in order to identify areas of aquifer vulnerability. The study identifies the areas where ion exchange phenomena occur, as well as the parts of the aquifer where the qualitative degradation of the aquifer system is enhanced. The paper, finally, assesses the lack of any scientific groundwater resources management of the area by the local water authorities, as well as the current practices of the existing pumping conditions scheme as applied by groundwater users.An erratum to this article can be found at  相似文献   

3.
In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.  相似文献   

4.
This paper presents a numerical scheme for fluid‐particle coupled discrete element method (DEM), which is based on poro‐elasticity. The motion of the particles is resolved by means of DEM. While within the proposition of Darcian regime, the fluid is assumed as a continuum phase on a Eulerian mesh, and the continuity equation on the fluid mesh for a compressible fluid is solved using the FEM. Analytical solutions of traditional soil mechanics examples, such as the isotropic compression and one‐dimensional upward seepage flow, were used to validate the proposed algorithm quantitatively. The numerical results showed very good agreement with the analytical solutions, which show the correctness of this algorithm. Sensitivity studies on the effect of some influential factors of the coupling scheme such as pore fluid bulk modulus, volumetric strain calculation, and fluid mesh size were performed to display the accuracy, efficiency, and robustness of the numerical algorithm. It is revealed that the pore fluid bulk modulus is a critical parameter that can affect the accuracy of the results. Because of the iterative coupling scheme of these algorithms, high value of fluid bulk modulus can result in instability and consequently reduction in the maximum possible time‐step. Furthermore, the increase of the fluid mesh size reduces the accuracy of the calculated pore pressure. This study enhances our current understanding of the capacity of fluid‐particle coupled DEM to simulate the mechanical behavior of saturated granular materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The paper presents a constitutive model for simulating the high strain‐rate behavior of sands. Based on the concepts of critical‐state soil mechanics, the bounding surface plasticity theory and the overstress theory of viscoplasticity, the constitutive model simulates the high strain‐rate behavior of sands under uniaxial, triaxial and multi‐axial loading conditions. The model parameters are determined for Ottawa and Fontainebleau sands, and the performance of the model under extreme transient loading conditions is demonstrated through simulations of split Hopkinson pressure bar tests up to a strain rate of 2000/s. The constitutive model is implemented in a finite‐element analysis software Abaqus to analyze underground tunnels in sandy soil subjected to internal blast loads. Parametric studies are conducted to examine the effect of relative density and type of sand and of the depth of tunnel on the variation of stresses and deformations in the soil adjacent to the tunnels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this paper is to present a three‐dimensional (3D) finite element modeling of heat and mass transfer phenomena in partially saturated open porous media with random fields of material properties. Randomness leads to transfer processes within the porous medium that naturally need a full 3D modeling for any quantitative assessment of these processes. Nevertheless, the counterpart of 3D modeling is a significant increase in computations cost. Therefore, a staggered solution strategy is adopted which permits to solve the equations sequentially. This appropriate partitioning reduces the size of the discretized problem to be solved at each time step. It is based on a specific iterative algorithm to account for the interaction between all the transfer processes. Accordingly, a suitable linearization of mass convective boundary conditions, consistent with the staggered algorithm, is also derived. After some validation tests, the 3D numerical model is used for studying the drying process of a cementitious material with regard to its intrinsic permeability randomness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In quasi‐brittle material the complex process of decohesion between particles in microcracks and localization of the displacement field into macrocracks is limited to a narrow fracture zone, and it is often modelled with cohesive crack models. Since the anisotropic nature of the decohesion process in separation and sliding is essential, it is particularly focused in this paper. Moreover, for cyclic and dynamic loading the unloading, load reversal (including crack closure) and rate dependency are essential features that are included in a new model. The modelling of degradation is based on a ‘localized’ version of anisotropic continuum damage coupled to inelasticity. The concept of strain energy equivalence between the states in the effective and nominal settings is adopted in order to define the free energy of the interface. The proposed fracture criterion is of the Mohr type, with a smooth transition of the failure and kinematics (slip and dilatation) characteristics between tension and shear. The chosen potential, of the Lemaitre‐type, for evolution of the dissipative processes is additively decomposed into plastic and damage parts, and non‐associative constitutive equations are obtained. The constitutive equations are integrated by applying the backward Euler rule and by using Newton iteration. The proposed model is assessed analytically and numerically and a typical calibration procedure for concrete is proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A four‐node plane parametric element AQGβ6‐I is constructed on the basis of the quadrilateral area coordinate, the generalized conforming principle and the projection technique with a penalty factor β within an interval of 0–1. When β = 0, the element has excellent bending performance. When β = 1, the element can pass patch test strictly; its performance is as good as many famous elements. When β value is between 0 and 1, such as β = 0.5, the element can arrive at a compromise between (relatively) low sensitivity to mesh distortion and perfect convergence. The work provides an illuminating method to alleviate a difficult problem in finite element modelling using the four‐node quadrilateral element, which can pass the strict patch test, but has poor performance in bending dominated problem; on the contrary, it has excellent performance in bending dominated problem but cannot pass the strong patch test. The AQGβ6‐I with the convergence formulation (β = 1) is then applied to coupled solid‐deformation/fluid‐flow simulation for porous geomaterials. The computational examples are carried out to demonstrate that the AQGβ6‐I (β = 1) element is not only stable, reliable and efficient but also of high accuracy. The present study provides a good applicable element for finite element simulations of solid‐deformation/fluid‐flow for porous geomaterials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Compaction and associated fluid flow are fundamental processes in sedimentary basin deformation. Purely mechanical compaction originates mainly from pore fluid expulsion and rearrangement of solid particles during burial, while chemo‐mechanical compaction results from Intergranular Pressure‐Solution (IPS) and represents a major mechanism of deformation in sedimentary basins during diagenesis. The aim of the present contribution is to provide a comprehensive 3D framework for constitutive and numerical modeling of purely mechanical and chemo‐mechanical compaction in sedimentary basins. Extending the concepts that have been previously proposed for the modeling of purely mechanical compaction in finite poroplasticity, deformation by IPS is addressed herein by means of additional viscoplastic terms in the state equations of the porous material. The finite element model integrates the poroplastic and poroviscoplastic components of deformation at large strains. The corresponding implementation allows for numerical simulation of sediments accretion/erosion periods by progressive activation/deactivation of the gravity forces within a fictitious closed material system. Validation of the numerical approach is assessed by means of comparison with closed‐form solutions derived in the context of a simplified compaction model. The last part of the paper presents the results of numerical basin simulation performed in one dimensional setting, demonstrating the ability of the modeling to capture the main features in elastoplastic and viscoplastic compaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Wind‐blown sand movement, considered as a particle‐laden two‐phase flow, was simulated by a new numerical code developed in the present study. The discrete element method was employed to model the contact force between sand particles. Large eddy simulation was used to solve the turbulent atmospheric boundary layer. Motions of sand particles were traced in the Lagrangian frame. Within the near‐surface region of the atmospheric boundary layer, interparticle collisions will significantly alter the velocity of sand. The sand phase is quite dense in this region, and its feedback force on fluid motion cannot be ignored. By considering the interparticle collision and two‐phase interaction, four‐way coupling was achieved in the numerical code. Profiles of sand velocity from the simulations were in good agreement with experimental measurements. The mass flux shows an exponential decay and is comparable to reported experimental and field measurements. The turbulence intensities and shear stress of sand particles were estimated from particle root‐mean‐square velocities. Distributions of slip velocity and feedback force were analysed to reveal the interactions between sand particles and the continuous fluid phase.  相似文献   

11.
The construction of shield tunnels under riverbeds and seabeds has considerably increased over the past decades. Due to the ultra‐high water head, water leakage through tunnel joints is a major concern during a tunnel's service life. One practical solution to prevent groundwater penetration is to implement ethylene‐propylene‐diene‐monomer gaskets at the segmental joints. However, numerical simulation of fluid pressure penetration into rubber materials remains a challenging problem in computational mechanics. Severe mesh distortions can occur due to large deformation. Consequently, a convergent solution is difficult to achieve. This paper presents an Abaqus‐based numerical framework to solve the previously mentioned problem using the implicit finite element solver. The key aspects of this framework are twofold: (1) a remesh and re‐map algorithm to overcome the excessive mesh distortion, and (2) simulation of fluid penetration into the contact interface of the gaskets to reproduce the water‐leakage process at the tunnel joints. The proposed framework is first tested to simulate the gasket‐in‐groove mechanical behavior and is then validated using experimental data and the solution produced by an explicit finite element solver. The developed framework is then adopted to predict the water‐leakage pressure at gasketed tunnel joints to illustrate the practical applications. Finally, the numerical results are compared with experimental data to demonstrate the accuracy and robustness of the proposed method and confirm its superiority and effectiveness over existing methods. This novel method can be used by tunnel designers to analyze and estimate the waterproof behavior of gasketed joints in shield tunnels without performing extensive experimental testing works.  相似文献   

12.
This paper presents a non‐linear coupled finite element–boundary element approach for the prediction of free field vibrations due to vibratory and impact pile driving. Both the non‐linear constitutive behavior of the soil in the vicinity of the pile and the dynamic interaction between the pile and the soil are accounted for. A subdomain approach is used, defining a generalized structure consisting of the pile and a bounded region of soil around the pile, and an unbounded exterior linear soil domain. The soil around the pile may exhibit non‐linear constitutive behavior and is modelled with a time‐domain finite element method. The dynamic stiffness matrix of the exterior unbounded soil domain is calculated using a boundary element formulation in the frequency domain based on a limited number of modes defined on the interface between the generalized structure and the unbounded soil. The soil–structure interaction forces are evaluated as a convolution of the displacement history and the soil flexibility matrices, which are obtained by an inverse Fourier transformation from the frequency to the time domain. This results in a hybrid frequency–time domain formulation of the non‐linear dynamic soil–structure interaction problem, which is solved in the time domain using Newmark's time integration method; the interaction force time history is evaluated using the θ‐scheme in order to obtain stable solutions. The proposed hybrid formulation is validated for linear problems of vibratory and impact pile driving, showing very good agreement with the results obtained with a frequency‐domain solution. Linear predictions, however, overestimate the free field peak particle velocities as observed in reported field experiments during vibratory and impact pile driving at comparable levels of the transferred energy. This is mainly due to energy dissipation related to plastic deformations in the soil around the pile. Ground vibrations due to vibratory and impact pile driving are, therefore, also computed with a non‐linear model where the soil is modelled as an isotropic elastic, perfectly plastic solid, which yields according to the Drucker–Prager failure criterion. This results in lower predicted free field vibrations with respect to linear predictions, which are also in much better agreement with experimental results recorded during vibratory and impact pile driving. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号