首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The effects of methyl methacrylate (MMA) grafting and in situ formation of silica particles on the morphology and mechanical properties of natural rubber latex (NRL) were investigated. MMA grafting on NRL was carried out using cumyl hydroxy peroxide/tetraethylene pentamine (CHPO/TEPA) as a redox initiator couple. The grafting efficiency of the grafted NR was determined by solvent extractions and the grafted NRL was then mixed with tetraethoxysilane (TEOS), a precursor of silica, coated by adherence to a glass surface to form a film and cured at 80°C. The resultant products were characterized by FT‐IR and transmission electron microscopy. The influence of varying the MMA monomer weight ratio on the surface morphology of the composites was investigated by scanning electron and atomic force microscopy. The PMMA (poly MMA) grafted NRL particles were obtained as a core/shell structure from which the NR particles were the core seed and PMMA was a shell layer. The silane was converted into silica particles by a sol–gel process which was induced during film drying at 80°C. The silica particles were fairly evenly distributed in the ungrafted NR matrix but were agglomerated in the grafted NR matrix. The root‐mean‐square roughness increased with an increasing weight ratio of MMA in the rubber. The in situ silica particles in the grafted NR matrix slightly increased both the modulus and the tear strength of the composite film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
“Green” composites with different amounts of in situ silica nano-particles were prepared by a sol-gel reaction of tetraethoxysilane (TEOS) in natural rubber (NR). The control of swelling degree of TEOS in NR and concentration of n-butylamine in water was useful to change the amount of generated in situ silica in the uncured NR matrix. In situ silica up to 42 parts per hundred rubber by weight (phr) was successfully filled in the NR matrix. The particle size of in situ silica became larger with the increase of silica content from ca. 10 nm to ca. 40 nm for 10 phr--40 phr loadings in the NR matrix, respectively. Even when the amount of in situ silica content was high, the dispersion of in situ silica particles was more homogeneous than that of commercial silica (VN-3). The reinforcement effect of the in situ silica for NR vulcanizates increased with increasing the in situ silica content.  相似文献   

3.
The viscosity, cure properties, storage, and loss moduli and tan δ of natural rubber (NR) filled with the same amounts of precipitated silica (PSi) and fly ash silica (FASi) fillers were measured. The fillers were treated with bis[3‐triethoxysilylpropyl‐]tetrasulfide (TESPT), or, used in the rubber untreated. TESPT is a sulfur‐containing bi‐functional organosilane that chemically adheres silica to rubber and also prevents silica from interfering with the reaction mechanism of sulfur cure. The dispersion of PSi and FASi in the rubber was investigated using scanning electron microscope (SEM). The effects of silica type and loading and surface treatment on the aforementioned properties were of interest. The SEM results showed that the FASi particles were larger in size and had a wider particle size distribution when compared with the PSi particles. The viscosity of the compounds decreased progressively with mixing time, and the compounds with FASi had a lower viscosity than those filled with PSi. The treatment with Si69 had no beneficial effect on the dispersion of the fillers in the rubber matrix. At low temperatures, the type and loading of the filler had no effect on the storage and loss moduli of the compounds, but the effect was more pronounced at high temperatures. There was also evidence from the tan δ and glass transition temperature (Tg) measurements that some limited interaction between the filler particles and rubber had occurred because of TESPT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Phenyl‐modified natural rubber was prepared in latex stage by bromination of deproteinized natural rubber followed by Suzuki‐Miyaura cross‐coupling reaction. First, the bromination of natural rubber was carried out using N‐bromosuccinimide in latex stage. The bromine atom content increased as amount of N‐bromosuccinimide increased. Second, the allylic bromine atom was replaced with a phenyl group using phenyl boronic acid in the presence of a palladium catalyst, according to the Suzuki‐Miyaura cross‐coupling reaction in latex stage. The resulting products were characterized by nuclear magnetic resonance (NMR) spectroscopy. Signal at 7.13 ppm was assigned to the phenyl group of the product, while signals at 3.98, 4.14, and 4.44 ppm were assigned to the remaining allylic brominated cis‐1,4‐isoprene units. The estimated phenyl group content and the conversion of the Suzuki‐Miyaura cross‐coupling reaction were 1.32 and 23.7 mol%, respectively. Glass transition temperature (Tg) of deproteinized natural rubber increased from ?62°C to ?46.7°C, when the phenyl group was introduced into the rubber.  相似文献   

5.
Microbial desulfurization of waste tyre rubber has been investigated with great efforts since 1990s, because waste rubber has created serious ecological and environmental problems. A microbial desulfurization technique for SBR ground rubber has been developed by a novel sulfur‐oxidizing bacterium Sphingomonas sp. The adaptability of Sphingomonas sp. with SBR ground rubber was tested with the amounts of SBR ground rubber varying from 0.5 to 4% g/l. The sol fraction of desulfurized SBR ground rubber increased 70%, compared with SBR ground rubber without desulfurization. Fourier transform infrared spectroscopy‐attenuated total reflectance (FTIR‐ATR) spectrum and X‐ray photoelectron spectroscopy (XPS) analysis of the desulfurized surface of vulcanized SBR flakes revealed that not only the oxidation of crosslinked S? S and S? C bonds, but also the rupture of C?C double bonds had happened to SBR vulcanizates during microbial desulfurization. The cure characteristics, such as scorch time and optimum cure time of natural rubber (NR) vulcanizates filled, were found to decrease with increasing contents of desulfurized SBR ground rubber, due to some reactive groups on its surface. NR vulcanizates filled with desulfurized SBR ground rubber had lower crosslink density and hardness, higher tensile strength and elongation at break, compared with those filled with SBR ground rubber of the same amount. Dynamic mechanical properties indicated that there were better crosslink distribution and stronger interfacial bonding between NR matrix and desulfurized SBR ground rubber. Scanning electron microscope (SEM) photographs showed that the fracture surfaces of NR vulcanizates filled with desulfurized SBR ground rubber had more smooth morphologies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In situ silica reinforcement of natural rubber (NR) grafted with methyl methacrylate (MMA) (MMA-GNR) was achieved via the sol–gel reaction of tetraethoxysilane (TEOS) by the use of solid rubber and latex solutions. Silica contents within the MMA-GNR as high as 48 and 19 phr were obtained when using the solid rubber and latex solutions, respectively, under optimum conditions. The conversion efficiency of TEOS to silica was close to 95%. The in situ formed silica MMA-GNR/NR composite vulcanizates were prepared. MMA-GNR/NR composite vulcanizates reinforced with the in situ formed silica prepared by either method had similar mechanical properties to each other, but a shorter cure time and higher mechanical properties than those reinforced with the commercial silica at 9 phr. The TEM micrographs confirmed that the in situ formed silica particles were well dispersed within the MMA-GNR/NR composite matrix, whilst the commercial silica particles showed a significant level of agglomeration and a lower level of dispersion.  相似文献   

7.
Zinc dimethacrylate functionalized graphene (Z‐GE), as reinforcing nanofiller for natural rubber (NR), was synthesized by liquid‐phase exfoliation and in situ method. The morphology and structure of Z‐GE were characterized to confirm the exfoliation and functionalization of GE. The NR/Z‐GE composites were prepared and investigated by mechanical analysis, crosslinked network analysis and the analysis of thermal conductivity. The results showed that the tensile strength, tear strength and modulus at 300% strain of NR/Z‐GE‐20 composites (contents 1.400 phr GE) were increased by 142%, 76% and 231% as compared with the pure NR, respectively. And the thermal conductivity of NR/Z‐GE‐30 composites is enhanced by 39% as that of the pure NR. This significant improvement is attributed to the formation of covalent crosslinked network and ionic crosslinked network and efficient interfacial interaction between GE and NR matrix. This method provides a new insight into the fabrication of multifunctional GE composites and enlarges its potential applications in high performance GE‐based rubber composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Summary: Three dimensional (3D) nanostructures of particulate silicas in natural rubber (NR) were observed for the first time by use of 3D transmission electron microscopy (3D‐TEM) combined with electron tomography. The method enabled us to visualize and evaluate structural characteristics in 3D space, such as the size and the volume of in situ silica generated in the NR matrix by the sol‐gel reaction of tetraethoxysilane, at nanometer scale resolution.

The reconstructed mass density view of the silica in an in situ silica‐filled natural rubber vulcanizate, as determined by 3D‐TEM.  相似文献   


9.
The in situ silica filling of natural rubber (NR) was carried out via the sol–gel reaction using tetraethoxysilane. The effect of the in situ silica content on the curing, mechanical, dynamic mechanical and thermal properties of the composite vulcanizate materials was investigated in comparison to that with a commercial silica preparation. The Mooney viscosity of the in situ silica filled NR vulcanizates showed a lower value compared with that of the commercial filled ones. The mechanical properties of the in situ silica composite materials, i.e., the moduli and compression set, were improved compared with the commercial silica filler NR vulcanizates. The reinforcement effect of in situ silica did not accord with the Smallwood equation but in contrast was in good agreement with the Guth and Gold equation using a shape factor (f) which itself was in close agreement with estimates derived from independent TEM analysis. The pseudo-network structure of the in situ silica was low, which resulted in a lower storage modulus at 25 °C. By filling NR with in situ silica, the thermal properties of the composite vulcanized material were also improved, and well dispersed in situ silica particles within the NR matrix were also observed.  相似文献   

10.
In situ silica was synthesized in three non‐vulcanized rubber matrices, namely natural rubber, styrene‐butadiene rubber, and EPDM (ethylene‐propylene diene ter‐polymer), using the sol–gel method with tetra‐ethoxysilane (TEOS) as silica precursor and hexylamine as catalyst. The effect of the reaction parameters such as the amount of TEOS, the reaction time (15–120 min), and the type of rubber was explored. Transmission electron microscopy was used to study the gradient in silica content and particle size over the sample thickness. The diffusion gradient of TEOS and catalyst solution in the rubber matrix responsible for the gradient was studied with Fick's law. An excellent dispersion of silica was obtained for all rubbers, even for the very non‐polar EPDM, without the use of any additives to improve the dispersion. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 967–978  相似文献   

11.
Novel biphasic structured in situ silica filled natural rubber composites were focused on their strain-induced crystallization (SIC) behavior from the viewpoint of morphology. The composites were prepared by in situ silica filling in natural rubber (NR) latex using a sol–gel reaction of tetraethoxysilane. Simultaneous time-resolved wide-angle X-ray diffraction and tensile measurements revealed a relationship between the characteristic morphology and tensile stress–strain properties of the composites associating with the SIC. Results showed stepwise SIC behaviors of NR-based composites for the first time. Pure rubber phases in the biphasic structure were found to afford highly oriented amorphous segments and oriented crystallites. The generated crystallites worked as reinforcing fillers together with the in situ silica to result in high tensile stresses of the composites. The observed characteristics are useful for understanding a role of filler network in the reinforcement of rubber.  相似文献   

12.
Natural rubber (NR) with an in situ nanosilica nanomatrix was characterized in present work. The in situ nanosilica nanomatrix was prepared via graft copolymerization of a silane monomer, vinyltriethoxysilane (VTES), onto deproteinized NR (DPNR) in latex stage using tetrapentamine (TEPA)/tert‐butylhydroperoxide (TBHPO) as initiators. VTES conversion of more than 80% was obtained, and it depended on VTES concentration. The graft copolymer structure was characterized by Fourier transform infrared (FT‐IR), solution‐state proton nuclear magnetic resonance (1H‐NMR), and solid‐state 29Si‐NMR spectroscopy. FT‐IR analysis of the graft copolymer confirmed the formation of in situ silica particles, while solution‐state 1H‐NMR and solid‐state 29Si‐NMR revealed the partial hydrolysis of the ethoxy groups and polycondensation of the silanol groups. The formation of nanosilica particles enhanced thermal and mechanical properties of the graft copolymer. Morphology observations of the in situ nanosilica nanomatrix through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the spherical nanosilica particles form a nanomatrix surrounding NR particle. The formation of the nanomatrix was proved to enhance mechanical properties for NR materials.  相似文献   

13.
Structural characterization of vulcanized natural rubber was performed by high‐resolution latex‐state 13C NMR spectroscopy. The vulcanized natural rubber latex was prepared by vulcanization of high ammonia natural rubber latex with sulfur and sodium di‐n‐butyldithiocarbamate as vulcanizing agents. High resolution was attained for latex‐state 13C NMR spectroscopy even after vulcanization of the rubber latex, as is evident from no background in spectrum and narrow half width of signals, which were independent of vulcanization time. Small signals at 44 and 58 ppm in the carbon region were assigned by measurements of both distortionless enhancement by polarization transfer (DEPT) and attached proton test (APT) to secondary, tertiary, and quaternary carbons of crosslinking points. The assignment was proved by high‐resolution solution‐state NMR spectroscopy of vulcanized liquid cis‐1,4‐polyisoprene as a model, in which DEPT, APT, 2‐dimensional 1H‐13C correlation (HETCOR), and 2‐dimensional heteronuclear multiple bond correlation (HMBC) measurements were applied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1003–1009, 2007  相似文献   

14.
In this paper, nanoalumina (Al2O3) highly filled ethylene propylene diene monomer (EPDM) composites are prepared, and the mechanical (static and dynamic) properties and thermal conductivity are investigated systemically through various characterization methods. Furthermore, influences of in situ modification (mixing operation assisted by silane at high temperature for a certain time) with the silane‐coupling agent bis‐(3‐triethoxy silylpropyl)‐tetrasulfide (Si69) and stearic acid (SA) pretreatment on the nano‐Al2O3 filled composites are as well investigated. The results indicate that nano‐Al2O3 particles can not only perform well in reinforcing EPDM, but also improve the thermal conductivity significantly. Assisted by in situ modification with Si69, the mechanical properties (especially dynamic mechanical properties) of the nano‐Al2O3 filled composites are improved obviously, without influencing the thermal conductivity. By comparing to the traditional reinforcing fillers, such as carbon black (grade N330) and silica, in situ modified nano‐Al2O3 filled composites exhibit excellent performance in mechanical (static and dynamic) properties as well as better thermal conductivity, especially lower compression heat build‐up and better fatigue resistance. In general, our work indicates that nano‐Al2O3, as the novel thermal conductive reinforcing filler, is suitable to prepare rubber products serving in dynamic conditions, with the longer expected service life. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The viscoelastic properties of various crosslinked natural rubbers, NR, were investigated by mechanical spectroscopy. The glass transition temperature, Tg, was found to be dependent on both the crosslink density and the crosslink type. Higher values of Tg were obtained for sulfur-crosslinked NR than for peroxide-crosslinked NR at the same crosslink density. The greater influence of the sulfur content on Tg may be attributed to polysulfidic crosslinks and cyclic sulfide structures favored at high sulfur contents. Sulfur-vulcanized NRs with monosulfidic crosslinks, favored at relatively high accelerator/sulfur ratios, have properties more similar to the peroxide-cured NR with simple carbon(SINGLE BOND)carbon crosslinks covalent bonds, resulting in only small shifts in Tg. A qualitative analysis of monosulfidic crosslinks and polysulfidic structures was performed with 13C solid-state NMR spectroscopy. The storage modulus, E′, in the rubbery plateau region increased with increasing crosslink density. However, the crosslink type did not influence the moduli values as much as it influenced the Tg values. Different methods of detecting the crosslink density were also discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The loading effect of precipitated silica (PSi) and fly ash‐based silica (FASi) on mechanical properties of natural rubber/chloroprene (NR/CR) under thermal and thermal‐oil ageing was investigated with variation in NR content in the NR/CR blends. The selected results were compared with vulcanized NR/nitrile rubber (NR/NBR) blends. The cure time of CR vulcanizate was found to decrease with increasing NR content, but increased with silica fillers. The Mooney viscosity for CR vulcanizates reduced with increasing NR content. The addition of NR had no effect on tensile modulus and tensile strength for the FASi filled NR/CR, but the opposite trend was observed for the PSi filled NR/CR. The post‐curing effect was more significant in PSi filled NR/CR than in FASi filled NR/CR. The tensile strength of the NR/CR vulcanizates was slightly reduced after thermal ageing especially at high NR content, more extreme reduction being found by thermal‐oil ageing. The elongation at break of NR/CR with both silica fillers ranged from 400 to 900%. The hardness results were similar to the tensile modulus. The addition of PSi in NR/CR considerably increased the tear strength, but less pronounced effect was found for FASi. The resilience properties of NR/CR tended to decrease with increasing silica content. The compression set became poorer when NR content was increased. The PSi showed higher improvement in compression set than the FASi. The effects of silica and ageing on the mechanical properties for NR/CR vulcanizates were similar to those for NR/NBR vulcanizates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Solution impregnations, pulltrusion and film stacking are widely used methods to prepare thermoplastic composite materials. Extruders are used to melt the polymer and to incorporate fibers into the polymer in order to modify physical properties. In this article, the compounding of colloidal silica nanoparticles filled polyamide‐6 (PA‐6) is achieved using a twin‐screw extruder, which has a significant market share due to its low cost and easy maintenance. The experiments were performed at 250 rpm and the bulk throughput was 6 kg h?1 with a pump pressure of 30 bars. The composites were characterized with nuclear magnetic resonance (NMR), wide angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). As determined by WAXD, the PA‐6 showed higher amounts of γ‐phase when compared to other synthesis methods such as in situ polymerization. TEM pictures showed that the silica particles aggregated nevertheless, upon addition of 14% (w/w) silica the E‐modulus increased from 2.7 to 3.9 GPa indicating that an effective mechanical coupling with the polymer was achieved. The behavior, illustrated with dynamic mechanical analysis (DMA) curves, indicated that in general when a filled system is compared to unfilled material, the values of the moduli (E′ and E″) increased and tan δ decreased. Determination of molecular mass distribution of the samples by means of size exclusion chromatography (SEC) coupled to a refractive index (RI), viscosity (DV) and light scattering (LS) detector revealed that the addition of silica did not decrease the average molecular weight of the polymer matrix, which is of importance for composite applications. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The study described in this paper first demonstrates that a newly modified form of natural rubber, namely graft copolymers of natural rubber with poly (acetoacetoxyethyl methacrylate), NR‐g‐PAAEM, is able to undergo a cross‐linking reaction at room temperature by reaction with a water dispersible polyisocyanate based on hexamethylene diisocyanate (poly‐HDI). Attenuated total reflectance Fourier transform infrared (ATR‐FTIR) analysis indicated that amide groups were formed by the reaction of the acetoacetyl groups (AcAc) present in the grafted poly (acetoacetoxyethyl methacrylate) (PAAEM) chains with the poly‐HDI. This observation was accompanied by a noticeable increase in the tensile strength of the NR‐g‐PAAEM latex films when adding poly‐HDI to the latex prior to film formation. DMTA analyses also revealed a shift in the tan δ peaks, corresponding to the transitions of both NR‐g‐PAAEM and free PAAEM phases, to higher temperatures. These results provide firm evidence of cross‐linking between NR‐g‐PAAEM chains by reaction with poly‐HDI during film formation under ambient conditions. Adhesives for bonding wood to wood based on the NR‐g‐PAAEM latex were then prepared, using poly‐HDI as the cross‐linker. The lap shear strength of the resulting adhesives exhibited a maximum value of 2657 KPa when a poly‐HDI:AAEM molar ratio of 3:1 was employed. It was also observed that the adhesive attained about approximately 89% of the highest lap shear strength after it was allowed to set at 30°C for 24 hours. Hence, the use of poly‐HDI in cross‐linking NR particles bearing grafted PAAEM offers great potential for developing latex adhesives and coatings capable of curing under ambient conditions.  相似文献   

19.
Method of quantitative analysis through latex‐state 13C NMR spectroscopy was established for in situ determination of epoxy group content of epoxidized natural rubber in latex stage. The epoxidized natural rubber latex was prepared by epoxidation of deproteinized natural rubber with freshly prepared peracetic acid in latex stage. The resulting epoxidized deproteinized natural rubber (EDPNR) latex was characterized through latex‐state 13C NMR spectroscopy. Chemical shift values of signals of latex‐state 13C NMR spectrum for EDPNR were similar to those of solution‐state 13C NMR spectrum for EDPNR. Resolution of latex‐state 13C NMR spectrum was gradually improved as temperature for the nuclear magnetic resonance (NMR) measurement increased to 70°C. Signal‐to‐noise ratio of latex‐state 13C NMR measurement was similar to that of solution‐state 13C NMR measurement at temperature above 50°C. The epoxy group content determined through latex‐state NMR spectroscopy was proved to be the same as that determined through solution‐state NMR spectroscopy. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Bound rubber in a filled rubber compound is formed by physical adsorption and chemisorption between the rubber and the filler. Styrene–butadiene rubber (SBR) is composed of four components of styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units. Filler–polymer interactions in both silica and carbon black‐filled SBR compounds were studied by analyzing microstructures of the bound rubbers with pyrolysis‐gas chromatography. Differences in the filler–polymer interactions of the styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units were investigated. The filler–polymer interactions of the butadiene units were found to be stronger than that of the styrene unit. The interactions of the cis‐1,4‐ and trans‐1,4‐units were stronger with carbon black than with silica, whereas the 1,2‐unit interacted more strongly with silica than with carbon black. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 439–445, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号