首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Concrete‐faced rockfill dam (CFRD) is a popular alternative to traditional dam types in the last two decades. The modelling of CFRD involves complex multi‐body contact and strong geometry and material nonlinearities. We present a numerical approach for the modelling of CFRDs in this paper. Based on the dual‐mortar finite element method, the presented approach considers different parts of rockfill and all concrete slabs as independent deformable continuum. The multi‐body contacts are modelled using Lagrange multipliers with a weak form segment‐to‐segment contact strategy. To alleviate instability induced by strong geometry nonlinearity in the slab–slab contact, we propose a mixed type of constraints for the tangential contact. A general transformation scheme is introduced to simplify the implementation of contact constraints. Three‐dimensional analysis of Tianshengqiao‐1 CFRD is performed. The nonlinear and time‐dependent deformation of the rockfill is considered. We study the influence of the rockfill deformation on the reliability of the concrete face. Three major concerns of the face, that is, the axial compression, the slab–slab separation and the face‐rockfill separation, are discussed in detail. The numerical results are compared with data from in‐situ observation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Recently constructed concrete‐faced rockfill dams (CFRDs) often use soft inter‐slab joints to prevent axial compression‐induced extrusion damage in the concrete face. Due to the complexity of the multibody contact and the lack of information on the actual behavior of soft joints, it is highly challenging to numerically assess the effect of soft joints in CFRDs. In this paper, we present a numerical approach for the three‐dimensional modeling of CFRDs with hard and soft joints. A dual mortar finite element method with Lagrange multiplier is developed to treat the multibody contact in hard joints with impenetrability condition. The soft joint slab‐filler‐slab contact system is modeled using an equivalent contact interface approach, where the soft contact constraints are imposed using a perturbed Lagrange formulation. Through a series of laboratory tests, the mechanical behavior of soft joint is investigated. An extrusion model for the soft joint is presented and implemented in the dual mortar finite element method. The proposed numerical method is applied to the three‐dimensional analysis of Tianshengqiao‐1 CFRD. Despite the complex multibody contact and strong material and geometry nonlinearities in the CFRD, the proposed method is stable and capable of capturing salient characteristics of the CFRD. Numerical results show that in Tianshengqiao‐1, the employment of soft joints can effectively reduce the axial compression stress, thus greatly alleviating the risk of extrusion damage in the concrete face.  相似文献   

3.
堆石体流变对混凝土面板坝应力变形特性的影响   总被引:1,自引:0,他引:1  
李国英  赵魁芝  米占宽 《岩土力学》2005,26(Z1):117-120
简要介绍了公伯峡水电站混凝土面板堆石坝坝内堆石料流变试验结果和流变计算模型。采用三维有限单元法对公伯峡水电站混凝土面板坝进行了模拟计算,对比了考虑堆石料流变和不考虑流变的计算结果,分析研究了堆石料流变特性对坝体变形以及对混凝土面板应力变形和周边缝位移的影响。  相似文献   

4.
王辉  常晓林  周伟 《岩土力学》2006,27(Z1):85-89
采用三维非线性有限单元法对牛牛混凝土面板堆石坝施工期和蓄水期的应力变形进行模拟计算,并结合沈珠江提出的指数型曲线流变模型,采用自行编制的有限元程序对大坝进行了三维流变分析,得到了坝体、面板在各个时期的应力和变形情况,以及堆石流变对坝体应力变形的影响;计算面板和周边缝位移时采用了三维子模型法,根据实际的坝体填筑、蓄水过程,对每一期面板浇筑之前的坝体上游面位移进行修正,并通过在面板与堆石体之间设置三维面-面摩擦接触单元,来有效模拟面板的应力、变形,为该坝的进一步优化设计提供了有益的建议。  相似文献   

5.
面板堆石坝垂直缝破坏下三维渗流场有限元模拟   总被引:1,自引:0,他引:1  
陈守开  严俊  李健铭 《岩土力学》2011,32(11):3473-3478
采用改进节点虚流量法求解无压稳定渗流场,并引入无厚度的裂缝模型对破坏的垂直缝渗流行为进行模拟,得到面板堆石坝裂缝渗流问题的有限元分析方法,并编制Fortran程序。以某混凝土面板堆石坝为例,计算了面板单一垂直缝破坏和多条垂直缝破坏条件下的三维渗流场,得到不同条件下渗流场的水头分布、浸润线以及渗漏量,系统分析了面板堆石坝在垂直缝破坏条件下的稳定渗流场规律和特点。结果表明,该方法能对渗流逸出点和浸润线进行准确定位,还能很好地模拟面板垂直缝破坏对坝区渗流场的影响,可以为面板堆石坝的接缝设计提供参考。  相似文献   

6.
水布垭超高面板堆石坝变形控制方法研究   总被引:1,自引:0,他引:1  
杨启贵  常晓林  周创兵  周伟 《岩土力学》2010,31(Z2):247-253
通过对已建水布垭超高面板堆石坝的设计经验总结,从数值分析、工程类比、坝体分区,堆石体材料压实标准、施工填筑程序、面板浇筑时机、面板浇筑时其顶部与临时坝顶的高差等方面探讨变形控制方法,归纳、总结了水布垭超高面板堆石坝变形控制的基本思路,以减小施工期坝体的不均匀沉降,改善面板在施工期、运行期的应力变形状态。  相似文献   

7.
水布垭面板堆石坝的三维弹塑性数值分析研究   总被引:2,自引:0,他引:2  
汪明元  程展林  林绍忠  陈琴 《岩土力学》2004,25(Z2):507-512
在建的清江水布垭面板堆石坝高达233 m,是目前同类坝型中最高的.采用MSC.Marc非线性有限元程序,发展了三维子模型法,对该坝进行了三维弹塑性有限元仿真分析,模拟了面板的分缝、坝体材料分区、填筑及蓄水过程,采用双屈服面弹塑性模型模拟堆石体的变形特征.根据数值分析的结果,对坝体和面板的应力变形分布规律进行了探讨.  相似文献   

8.
面板坝垂直缝及止水失效渗流场有限元模拟   总被引:2,自引:0,他引:2  
潘少华  毛新莹  白正雄 《岩土力学》2008,29(Z1):145-148
以金川面板堆石坝为例,用有限元方法计算了当面板缝及止水局部失效时各种工况下的渗流场,系统分析了大坝在面板垂直缝及止水局部失效后的稳定渗流场的规律和特点。采用无厚度的二维平面单元来模拟面板垂直缝及止水结构周边缝,同时采用理论上严密的Signorini型变分不等式方法进行求解,此方法能对渗流出渗点和浸润线进行准确定位。通过分析计算结果,指出了面板缝及止水结构周边缝的失效位置,失效缝宽对等势线、浸润线以及渗漏量的影响。为面板堆石坝接缝的设计提供参考。  相似文献   

9.
High core rockfill dams exhibit complex deformation mechanisms because of complicated geological conditions, many material partitions and severe weather conditions. When realistic parameters cannot be obtained through laboratory tests or engineering analogies because of effects of size or time, back analysis is necessary to predict deformation characteristics. This paper proposes a method of deformation back analysis based on the response surface method and genetic optimization theory. The parameters of the creep and Duncan–Chang models for the Pubugou gravelly soil core rockfill dam are sequentially calculated. Back analysis performed using this method efficiently yields more precise results than those obtained from laboratory-determined parameters.  相似文献   

10.
杨荷  周伟  马刚  李少林  常晓林 《岩土力学》2016,37(6):1697-1705
如何准确确定原级配堆石体的力学参数是高堆石坝建设中亟待解决的一个关键问题,参数反演是解决这一问题的可行方法之一,传统的参数反演方法因需要进行大量的有限元正分析,其计算工作量大,反演效率较低。响应面法可以有效克服以上问题,但已有方法仅针对堆石体的瞬变参数,未考虑流变参数,不能满足堆石坝长期变形预测的需要。综合考虑瞬变和流变参数,通过构造更加合理的响应面函数,提出了基于响应面法的高堆石坝瞬变-流变材料参数反演方法,大大提高了反演的效率和精度。以水布垭面板堆石坝为例,采用该方法对坝体瞬变和流变参数进行了反演分析。反演结果表明,计算值与实测值在数值和变化规律上总体符合较好,反演结果合理可靠且更加高效。  相似文献   

11.
The wetting deformation of coarse granular materials is often considered to be an important cause of the core wall rockfill dam cracks during impounding. By analyzing existing research results, this paper proposes a hyperbolic relationship between the wetting axial strain and wetting stress level and puts forwards a warped surface relationship among spherical stress, shear stress, and the ratio of wetting volumetric strain to wetting axial strain. To illustrate its practicability, the wetting strain model's parameter determination process is introduced and the rockfill materials wetting parameters are determined using the triaxial wetting test data. Moreover, the collapse settlement of Guanyinyan rockfill dam during first impounding is numerically simulated using the proposed method to calculate rockfill wetting deformation and verified by field measurements and monitoring data. The results show that the calculative method of wetting deformation proposed in this paper is reasonable and practical; the wetting deformation of upstream rockfill materials would cause an adverse deformation trend, which may lead to crack occurrence at the upstream slope and dam crest; and the Guanyinyan rockfill dam cracks on the top of junction mainly caused by the wetting deformation of upstream rockfill.  相似文献   

12.
深覆盖层上面板堆石坝的圆弧型防渗墙   总被引:1,自引:0,他引:1  
郦能惠  孙大伟  米占宽 《岩土力学》2006,27(10):1653-1657
覆盖层的防渗设施大都采用混凝土防渗墙。防渗墙在靠近两岸部位及靠近顶部常存在较大的拉应力,易导致混凝土开裂并产生渗漏,影响大坝的安全。采用平面上防渗墙轴线呈圆弧型的防渗墙来改善防渗墙的应力性状,并用三维有限元法数值分析对圆弧型防渗墙与直线型防渗墙的应力变形性状进行分析比较,论证了以圆弧型防渗墙替代直线型防渗墙的技术合理性,建议面板堆石坝坝基防渗采用圆弧型防渗墙更为有利。  相似文献   

13.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   

14.
周伟  谢婷蜓  马刚  常晓林 《岩土力学》2012,33(10):3006-3012
采用三维颗粒流程序,模拟了堆石体的真三轴试验,不仅研究了堆石体在三维应力条件下的宏观应力变形特点,而且将细观与宏观参数联系起来,进一步完善了对堆石体的研究。试验过程采用等中主应力比路径加载。通过比较堆石体真三轴颗粒流模型试验和室内真三轴试验结果,表明颗粒流程序能较好地模拟堆石体的力学特性。颗粒流数值试验结果表明,中主应力对堆石体在三向应力状态下的强度和变形特性均有显著的影响。应力比参数b从0~1变化过程中,中主应力面先压缩后膨胀,小主应力面一直处于压缩状态;中主应力对内摩擦角、弹性模量和泊松比也均有影响。从细观上看,围压越高,b值越大,颗粒配位数越大,孔隙率越小,故从细观角度解释了堆石体的宏观应力变形现象。  相似文献   

15.
杨庆  王超 《岩土力学》2011,32(Z2):568-572
针对岩石类材料压剪破坏,国内外学者做了大量真实岩石和模型材料的试验,并进行相应的数值模拟工作。但由于试验结果往往具有很强的离散性,且对影响试验结果的各因素缺乏系统地理论分析,加之传统常规有限元在处理裂纹这类强不连续问题时存在很大的困难,如在裂尖附近的高应力区需要剖分令人难以接受的密度的网格,同时在模拟裂纹生长时还需要对网格进行重新剖分,操作繁琐复杂,效率极低,因此,针对压剪复合断裂翼裂纹扩展规律的研究始终没有取得令人满意的成果。对原生裂纹的几何形态,主裂纹面与其间填充物的相互作用对翼裂纹起裂角的影响做了系统的理论分析,并利用扩展有限元对翼型裂纹扩展全过程进行数值模拟,与理论分析结果对比,吻合良好。相关成果为以后针对压剪复合断裂的研究提供了理论分析框架,同时对今后相关试验的开展具有理论指导作用  相似文献   

16.
This paper deals with the grouted pipe‐roofing reinforcement method that is used in the construction of tunnels through weak grounds. This system consists on installing, prior to the excavation of a length of tunnel, an array of pipes forming a kind of ‘umbrella’ above the area to be excavated. In some cases, these pipes are later used to inject grout to strengthen the ground and ‘connect’ the pipes. This system has proven to be very efficient in reducing tunnel convergence and water inflow when tunnelling through weak grounds. However, due to the geometrical and mechanical complexity of the problem, existing finite element frameworks are inappropriate to simulate tunnelling using this method. In this paper, a mathematical framework based on a homogenization technique to simulate ‘grouted pipe‐roofing reinforced ground’ and its implementation into a 3‐D finite element programme that can consider stage construction situations are presented. The constitutive model developed allows considering the main design parameters of the problem and only requires geometrical and mechanical properties of the constituents. Additionally, the use of a homogenization approach implies that the generation of the finite element mesh can be easily produced and that re‐meshing is not required as basic geometrical parameters such as the orientation of the pipes are changed. The model developed is used to simulate tunnelling with the grouted pipe‐roofing reinforcement method. From the analyses, the effects of the main design parameters on the elastic and the elastoplastic analyses are considered. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a coupling method between finite element and analytical layer‐elements is utilized to analyze the time‐dependent behavior of a plate of any shape and finite rigidity resting on layered saturated soils. Based on the integral transform techniques together with the aid of an order reduction method, an analytical layer‐element solution is derived from the governing equations for three‐dimensional Biot consolidation with respect to a Cartesian coordinate system and then extended to be the fundamental solution for the layered saturated soil under a point load. The Mindlin plate is modeled by eight‐noded isoparametric elements. The governing equations of the interaction between soil and plate in the Laplace‐Fourier transformed domain are deduced by referring to the coupling theory of FEM/BEM, and the final solution is obtained by applying numerical inversion. Numerical examples concerned with the time‐dependent response of a plate are performed to demonstrate the influence of soil and plate properties on the interaction process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents parallel and serial viscoelasto‐plastic models to simulate the rate‐independent and the rate‐dependent permanent deformation of stone‐based materials, respectively. The generalized Maxwell viscoelastic and Chaboche's plastic models were employed to formulate the proposed parallel and serial viscoelasto‐plastic constitutive laws. The finite element (FE) implementation of the parallel model used a displacement‐based incremental formulation for the viscoelastic part and an elastic predictor—plastic corrector scheme for the elastoplastic component. The FE framework of the serial viscoelasto‐plastic model employed a viscoelastic predictor—plastic corrector algorithm. The stone‐based materials are consisted of irregular aggregates, matrix and air voids. This study used asphalt mixtures as an example. A digital sample was generated with imaging analysis from an optically scanned surface image of an asphalt mixture specimen. The modeling scheme employed continuum elements to mesh the effective matrix, and rigid bodies for aggregates. The ABAQUS user material subroutines defined with the proposed viscoelasto‐plastic matrix models were employed. The micromechanical FE simulations were conducted on the digital mixture sample with the viscoelasto‐plastic matrix models. The simulation results showed that the serial viscoelasto‐plastic matrix model generated more permanent deformation than the parallel one by using the identical material parameters and displacement loadings. The effect of loading rates on the material viscoelastic and viscoelasto‐plastic mixture behaviors was investigated. Permanent deformations under cyclic loadings were determined with FE simulations. The comparison studies showed that the simulation results correctly predicted the rate‐independent and rate‐dependent viscoelasto‐plastic constitutive properties of the proposed matrix models. Overall, these studies indicated that the developed micromechanical FE models have the abilities to predict the global viscoelasto‐plastic behaviors of the stone‐based materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The present paper focuses on selected plasticity and damage‐plasticity models for describing the 3D material behavior of concrete. In particular, a plasticity model and a damage‐plasticity model are reviewed and evaluated. Based on the results of the evaluation, enhancements are proposed, aiming at improving the correspondence between predicted and observed material behavior and aiming at implementing a robust and efficient stress update algorithm in a finite element program for performing large‐scale 3D numerical simulations of concrete structures. The capabilities of the concrete models are demonstrated by 3D numerical simulations of benchmark tests with combined bending and torsional loading and combined compression and shear loading and by a large‐scale 3D finite element analysis of a model test of a concrete arch dam. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a coupled hydro‐mechanical formulation for the simulation of non‐planar three‐dimensional hydraulic fractures. Deformation in the rock is modeled using linear elasticity, and the lubrication theory is adopted for the fluid flow in the fracture. The governing equations of the fluid flow and elasticity and the subsequent discretization are fully coupled. A Generalized/eXtended Finite Element Method (G/XFEM) is adopted for the discretization of the coupled system of equations. A Newton–Raphson method is used to solve the resulting system of nonlinear equations. A discretization strategy for the fluid flow problem on non‐planar three‐dimensional surfaces and a computationally efficient strategy for handling time integration combined with mesh adaptivity are also presented. Several three‐dimensional numerical verification examples are solved. The examples illustrate the generality and accuracy of the proposed coupled formulation and discretization strategies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号