首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
在微电子封装器件的生产或使用过程中,由于封装材料热膨胀系数不匹配,不同材料的交界处会产生热应力,热应力是导致微电子封装器件失效的主要原因之一。本文采用MSC.Marc有限元软件,分析了QFNN件在回流焊过程中的热应力、翘曲变形、主应力及剪应力,并由析因实验哼殳计得到影响热应力的关键因素。研究表明:在回流焊过程中,QFN器件的最大热应力出现在芯片与粘结剂接触面的边角处;主应力和剪切应力的最大值也出现在芯片与粘结剂连接的角点处,其值分别为21.42MPa和-28.47MPa;由析因实验设计可知粘结剂厚度对QFN热应力的影响最大。  相似文献   

2.
在微电子封装器件的生产或使用过程中,由于封装材料热膨胀系数不匹配,不同材料的交界处会产生热应力.热应力是导致微电子封装器件失效的主要原因之一。采用MSC.Marc有限元软件.分析了QFN器件在回流焊过程中的热应力、翘曲变形、主应力及剪应力,并由析因实验设计得到影响热应力的关键因素。研究表明:在回流焊过程中,QFN器件的最大热应力出现在芯片与粘结剂接触面的边角处:主应力和剪切应力的最大值也出现在芯片与粘结剂连接的角点处.其值分别为21.42MPa和-28.47MPa:由析N实验设计可知粘结剂厚度对QFN热应力的影响最大。  相似文献   

3.
使用有限元软件MSC.Marc分析了芯片粘结剂的形态、厚度和宽度对典型微电子封装QFN(四方扁平无引脚封装)器件热应力的影响。结果表明:在有限元网格密度相同的条件下,粘结剂形态的不同会对QFN器件的热应力产生较大影响,粘结剂无溢出形态的最大热应力为85.87MPa,而粘结剂有溢出形态的最大热应力为77.84MPa,并且最大热应力出现的位置也不同;粘结剂的厚度和宽度对热应力的影响不明显;由于粘结剂形态的不同界面热应力的分布会有较大差别。  相似文献   

4.
基于动态拉伸DMA实验所获得的FR—4PCB的蠕变柔量曲线,用广义Maxwell模型表征了PCB的粘弹性蠕变松弛特性。通过有限元软件MSC Marc分别模拟了基于PCB弹性和粘弹性两种不同性质下,QFN器件在–55~+125℃热循环条件下的应力应变,并利用修正后的Coffin-Masson方程分别计算了它们的热疲劳寿命。结果表明,基于粘弹性条件下QFN焊点可靠性模拟结果更接近实际情况。  相似文献   

5.
QFN封装(Quard Flat No—lead方形扁平无引脚封装)具有良好的电性能和热性能、体积小、重量轻,其应用正在快速增长。QFN的封装和CSP有些相似,但元件底部没有焊球,与PCB的电气和机械连接是通过PCB焊盘上印刷焊膏、过回流焊形成的焊点来实现的,对PCB焊盘设计和表面贴装工艺提出了一些新的要求。印嗣网板设计、焊后检查、返侈等都是表面贴装过程中所应该关注的。  相似文献   

6.
QFN封装(Quard Flat No—lead方形扁平无引脚封装)具有良好的电性能和热性能、体积小、重量轻,其应用正在快速增长。QFN的封装和CSP有些相似,但元件底部没有焊球,与PCB的电气和机械连接是通过PCB焊盘上印刷焊膏、过回流焊后形成的焊点来实现,对PCB焊盘设计和表面贴装工艺提出了一些新的要求。印刷网板设计、焊后检查、返修等都是表面贴装过程中应该特别关注的。  相似文献   

7.
QFN封装元件组装工艺技术的研究   总被引:1,自引:0,他引:1  
鲜飞 《电子与封装》2005,5(12):15-19
QFN(Quad Flat No-lead Package,方形扁平无引脚封装)是一种焊盘尺寸小、体积小、 以塑料作为密封材料的新兴表面贴装芯片封装技术。由于底部中央大暴露焊盘被焊接到PCB的散热焊 盘上,这使得QFN具有极佳的电和热性能。QFN封装尺寸较小,有许多专门的焊接注意事项。文章 介绍了QFN的特点、分类、工艺要点和返修。  相似文献   

8.
介绍了方形扁平无引脚封装(QuadFaltNo-leadPackage,QFN)的特点、分类、工艺要点和返修。  相似文献   

9.
利用动态机械分析仪测定环氧模塑封(EMC)材料随温度变化的杨氏模量;使用热机械分析仪测定EMC随温度变化的尺寸变化量,并拟合得到热膨胀系数。在实验数据的基础上,变动EMC的橡胶态杨氏模量、玻璃态杨氏模量、玻璃转化温度以及热膨胀系数,并使用有限元软件MSC Marc分别模拟其热应力,以此来分析材料特性参数对热应力的影响。结果表明:QFN器件的最大热应力出现在芯片、粘结剂和EMC的连接处;减小橡胶态或玻璃态的杨氏模量可以有效地减小热应力;增大玻璃转化温度或热膨胀系数,QFN器件的热应力都会有所增加。  相似文献   

10.
在工业应用中,需要对方形扁平无引脚封装(Quad flat no-lead package, QFN)芯片表面划痕实时 准确检测,提出了一种快速的芯片表面划痕检测定位方法。通过图像分割算法获取缺陷图像,结合 轮廓提取算法可以较好地实现芯片表面划痕定位。同时,为了保证对芯片表面划痕实时检测,采用 基于粒子群的Otsu多阈值算法进行图像分割,不仅使得图像中缺陷区域更加明显,而且缩短了芯片 表面划痕检测时间。与直接采用Otsu算法相比,芯片表面划痕检测时间由秒级缩短至毫秒级,提高 了芯片质量检测效率。该划痕快速定位检测方法对芯片检测设备软件系统开发与应用具有重要的参考价值。  相似文献   

11.
采用有限元软件,在热循环加载条件下,对四角扁平无引脚封装(QFN,Quad Flat No-lead Package)器件进行了热疲劳可靠性分析。选取PCB焊盘长度等几个因素作为灵敏度分析的输入变量,热疲劳寿命作为输出变量。结果表明:影响QFN器件热疲劳寿命的主要因素依次是焊盘长度、焊盘宽度和焊盘弹性模量等,其灵敏度值分别为:–6.4848×10–1,6.0606×10–1和6.0000×10–1等。提出了提高QFN器件可靠性的方法。  相似文献   

12.
由吸潮引起的微电子塑封器件失效已经越来越多地引起人们的关注.选用QFN器件作为研究对象,首先进行QFN器件在高温高湿环境下吸潮17 h、50 h、96 h试验;然后利用有限元软件分析和模拟潮湿在QFN器件中的扩散行为,并建立湿气预处理阶段应力计算模型;最后,通过试验与仿真相结合,分析潮湿对封装可靠性的影响.研究表明:微电子塑封器件的潮湿扩散速度与位置有着重要的关系;在高温高湿环境下,微电子器件吸潮产生的湿热应力在模塑封装材料(EMC)、硅芯片(DIE)和芯下材料(DA)的交界处最大;QFN器件在高温高湿环境下吸潮产生的裂纹主要出现在硅芯片与DA材料交界面的边界.  相似文献   

13.
本文首先介绍了NiPdAu PPF (Pre-platedFrame)框架的镀层结构以及键合机理。并针对QFN(Quad Flat Non-lead)封装类型,研究了基于PPF框架的键合工艺的优化,着重探讨了为增强第二焊点焊接强度所进行的工艺参数改进。  相似文献   

14.
随着电子产品向更轻、更薄、更小、高密度化和高可靠性的发展,QFN(方形扁平无引脚)封装由于具有良好的电和热性能、体积小、质量轻,在电子产品中被越来越广泛的推广和应用。文章对QFN器件的焊盘设计,网板设计及组装工艺作了详细的介绍。  相似文献   

15.
QFN器件具有良好的电气性能,但器件回流焊接过程中极易产生底部热沉焊盘焊接空洞、器件引脚间锡珠、桥连等缺陷,当一个印制板焊接多个QFN器件时,缺陷发生率颇高。在高可靠性要求的航天产品焊接过程中,器件返修次数有限制,且返修会造成器件性能下降、组件可靠性降低等问题,因此亟需对QFN器件一次装配良率和焊接效果进行提升优化。为此,从原理上分析QFN器件热沉焊盘焊接空洞、器件引脚间锡珠缺陷产生机理,并从产品焊盘工艺性设计、钢网模板设计、焊接温度曲线设计等方面开展分析与优化。优化后,QFN器件一次装配良率提高,没有产生锡珠、虚焊等缺陷。  相似文献   

16.
文章介绍了QFN72和CQFN72结到外壳的等效热路分析及结到外壳热阻θJC的简化计算方法,结果表明原设计下CQFN72的热阻约为1.25 K·W-1,几乎是QFN72的一倍。优化CQFN热设计的主要途径是适当减薄陶瓷基板厚度、在陶瓷基板中嵌入钨柱阵列、芯片减薄和采用金基焊料焊接等。从CQFN热设计考虑,不应在主散热区热沉下采用4J29或4J42焊接垫片,否则会使热阻θJC增大10%以上。  相似文献   

17.
采用湿度敏感度评价试验及湿-热仿真方法,分析了温湿度对于QFN封装分层失效的影响.通过C-SAM和SEM等观察发现,QFN存在多种分层形式,分层大多发生在封装内部材料的界面上,包括封装塑封材料和芯片之间的界面、塑封材料和框架之间的界面等.此外,在封装断面研磨的SEM图像上发现芯片粘结剂内部有空洞出现.利用有限元数值模拟的方法,对QFN封装的内部湿气扩散、回流过程中的热应力分布等进行了模拟,分析QFN分层失效的形成原因.结果表明,由于塑封器件材料、芯片、框架间CTE失配,器件在高温状态湿气扩散形成高气压条件下易产生分层.最后提出了改善QFN分层失效的措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号