首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 406 毫秒
1.
目的:通过微波-超声波联合辅助提取法优化笋壳多糖提取工艺,并研究其抗氧化活性。方法:考察提取时间、料液比、微波功率、超声波功率、提取次数对笋壳多糖含量的影响,在单因素试验基础上做L9(34)正交试验优化提取工艺参数,通过测定笋壳多糖清除羟自由基、超氧阴离子自由基、1,1-二苯基-2-苦基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基的能力来评价其抗氧化活性,并同传统热水浸提法进行比较。结果:微波-超声波联合辅助提取最优工艺条件为提取时间30 min、料液比1∶30(g/mL)、微波功率200 W、超声波功率750 W,笋壳多糖得率为2.76%,粗多糖中多糖含量为37.63%;清除羟自由基、DPPH自由基和超氧阴离子自由基的半抑制浓度分别为0.17、0.43 mg/mL和大于16 mg/mL。微波-超声波联合辅助提取法的各项指标均优于热水浸提法。结论:微波-超声波联合辅助提取笋壳多糖比传统热水浸提具有耗时短、效率高等优点,笋壳水溶性多糖具有显著体外抗氧化活性。  相似文献   

2.
采用均匀设计法优化灰树花多糖超声波辅助提取工艺参数,为其多糖资源开发利用提供参考。以灰树花多糖提取率和β-葡聚糖提取率为评价指标,以超声功率、提取时间、提取温度和水料比为因素,通过均匀设计法优化提取工艺,同时对灰树花多糖抗氧化活性进行初步研究。结果表明:灰树花多糖超声波辅助提取最佳条件为,超声功率500 W、提取时间64 min、提取温度43℃、水料比31∶1(mL/g),浸提2次,在此条件下,灰树花多糖的提取率为23.055%;β-葡聚糖的最佳提取条件为,超声功率450 W、提取时间74 min、提取温度68℃、水料比28∶1(mL/g),浸提2次,在此条件下,β-葡聚糖的提取率为3.030 mg/g;抗氧化活性研究结果显示,灰树花多糖的还原力OD700nm值为0.561±0.005,其DPPH自由基和羟自由基的清除率均随质量浓度的增大而增大,DPPH自由基和羟自由基的清除率为分别为58.27%和89.58%,羟自由基的清除率高于VC。  相似文献   

3.
刘杰  李雅双  包瑛  刘春兰 《食品科学》2015,36(22):57-62
为了获得微波提取新疆阿魏根多糖的最佳工艺,以及新疆阿魏粗多糖的体外抗氧化活性,采用响应面法优化新疆阿魏水溶性多糖的微波提取工艺,在单因素试验的基础上选取液料比、提取温度、提取时间、微波功率进行试验设计,以所得多糖质量与苯酚硫酸法测得的多糖含量百分数的乘积作为优化指标,并检测新疆阿魏根多糖体外清除1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基的活性。结果:最优工艺条件为液料比120∶1(mL/g)、提取时间13 min、提取温度80 ℃、微波功率600 W,多糖实际得率为6.93%,接近于理论值。新疆阿魏根多糖对DPPH自由基有很好的清除作用,当质量浓度为1 000 μg/mL时,新疆阿魏根多糖对DPPH自由基的清除率为91.67%,作用接近于VC的清除作用。  相似文献   

4.
微波辅助提取澳洲坚果壳多糖的工艺优化及抗氧化性评价   总被引:1,自引:0,他引:1  
优化微波辅助提取澳洲坚果壳多糖的提取工艺,并测定其多糖的抗氧化性。在单因素试验的基础上,以多糖提取率为指标,通过L9(33)正交试验优化其多糖的提取工艺参数,并通过澳洲坚果壳多糖对•OH、1,1-苯基-2-苦肼基(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基和O2-•的清除来评价其抗氧化能力。结果表明,最佳提取工艺参数为微波功率200 W、微波时间2.5 min、料液比1∶50 (g/mL),在该条件下多糖的平均提取率为0.70%;多糖质量浓度为0.027 5 mg/mL时,对• OH、DPPH自由基和O2-•的清除率可分别达到63.11%、61.90%和80.09%,说明提取的澳洲坚果壳多糖对• OH、DPPH自由基和O2-•有较好的清除能力。  相似文献   

5.
小米多糖分离纯化及抗氧化活性研究   总被引:1,自引:0,他引:1  
以河峪黄小米为原料,通过响应面实验考察料液比、超声时间、提取温度、纤维素酶量对小米多糖提取量的影响,并对小米多糖进行分离纯化和体外抗氧化活性研究。结果表明:超声辅助酶法提取小米多糖的最佳工艺:料液比为1:22(g/mL),加酶量1%,超声时间21 min,提取温度60 ℃,此时小米多糖提取量为 30.34 mg/g。木瓜蛋白酶法-Sevag法蛋白脱除率为78.23%,多糖保留率为89.42%。用D315树脂法脱色率为88.00%,多糖保留率为80.20%。DEAE-52纤维素色谱柱和Sephadex G-100柱色谱纯化得到多糖组分MP-1。MP-1对DPPH自由基、羟自由基、超氧阴离子清除率最高分别为75.33%、70.69%、68.62%,对DPPH自由基、羟自由基、超氧阴离子半抑制浓度分别为1.105 mg/mL、0.200 mg/mL、1.371 mg/mL,表明小米中多糖具有较好的抗氧化能力。  相似文献   

6.
通过超声波辅助提取鹰嘴豆中粗多糖,利用耐高温α-淀粉酶与高转化率糖化酶处理除去淀粉成分,利用DEAE-52纤维素柱与Sephadex G-75凝胶纯化处理获得鹰嘴豆非淀粉中性多糖与鹰嘴豆非淀粉酸性多糖,并测定其体外抗氧化活性。结果表明:超声波最优提取参数为超声功率180 W,料液比1∶25,提取时间45 min,提取温度60℃,非淀粉多糖得率为1.36%;通过DEAE-52纤维素柱,以蒸馏水和0.2 mol/L氢氧化钠溶液为洗脱液,分别获得鹰嘴豆非淀粉中性多糖与鹰嘴豆非淀粉酸性多糖,并经过Sephadex G-75凝胶柱以三蒸水洗脱进一步纯化获得纯多糖;3mg/mL(w/v)鹰嘴豆非淀粉中性多糖和鹰嘴豆非淀粉酸性多糖对DPPH自由基、羟自由基、ABTS自由基的清除率分别为40.26%、26.25%、42.96%;53.83%、28.04%、51.55%,其清除率均随着多糖浓度的增加而提高,两种多糖均有较强的抗氧化活性。  相似文献   

7.
以云南和四川黑虎掌菌子实体为原料,热水浸提黑虎掌菌子实体粗多糖,并采用响应面法优化提取工艺。结果表明,云南黑虎掌菌粗多糖(YSP)的最佳提取条件为提取时间3.1 h,提取温度91 ℃,水料比60∶1(mL∶g),多糖得率16.75%;四川黑虎掌菌粗多糖(SSP)的最佳提取条件为提取时间3.1 h,提取温度93 ℃,水料比58:1(mL:g),多糖得率13.93%。以YSP和SSP为实验样品,VC为阳性对照,羟基自由基、DPPH自由基以及超氧阴离子自由基清除率为检测指标,评价YSP与SSP的体外抗氧化活性。结果表明:SSP的羟基、DPPH及超氧阴离子自由基最高清除率分别为86.14%、71.78%和99.98%,均高于对应的YSP清除率76.54%、58.52%和99.93%,且其超氧阴离子自由基清除率均高于VC,但羟基自由基和DPPH自由基清除率均低于VC。 关键词:中图分类号:R284.1 文章编号:0254-5071(2017)03-0150-06 doi:  相似文献   

8.
目的:研究白及多糖的超声-微波协同提取工艺优化及其抗氧化活性。方法:以多糖得率为考察指标,通过单因素实验对料液比、浸泡时间、微波功率和协同提取时间4个影响因素进行考察,采用正交实验设计对超声波-微波协同提取白及多糖的工艺条件进行优化,并研究白及多糖对羟基自由基(·OH)、超氧阴离子(O_2~-·)和1,1-二苯基-2-苦肼基自由基(DPPH·)的清除率以评价其体外抗氧化活性。结果:最佳提取工艺条件为:液料比20∶1 m L/g,浸泡时间6 min,微波功率200 W,协同提取时间5 min,该工艺条件下多糖得率达6.98%±0.19%。单独超声波提取法和单独微波提取法的多糖得率仅为超声-微波协同提取法的46.28%和87.96%,表明超声-微波协同提取优于单独超声波提取和单独微波提取。抗氧化活性研究表明在实验范围内,白及多糖对O-2·无明显清除作用,但对·OH和DPPH·具有明显的清除作用,采用超声-微波协同提取法提取的白及多糖较微波提取法具有更高的·OH和DPPH·清除活性,当多糖浓度为0.5 mg/m L时,对·OH和DPPH·清除率分别为92.82%和74.21%。结论:超声-微波协同提取具有省时高效的特点,特别适用于多糖类物质的提取。  相似文献   

9.
响应面法优化金蝉花多糖提取工艺及抗氧化活性分析   总被引:3,自引:0,他引:3  
通过考察液料比、浸提时间及浸提温度对金蝉花多糖含量的影响,在单因素试验基础上进行响应面优化提取工艺条件,并通过测定金蝉花多糖总还原力、清除1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-trinitrophenylhydrazine,DPPH)自由基、羟自由基(·OH)和超氧阴离子自由基(O2-·)的能力研究其体外抗氧化活性。结果表明,金蝉花多糖适宜的提取工艺参数为浸提时间130min、浸提温度80℃、液料比50∶1(mL/g),在此条件下金蝉花多糖含量实际值为26.14mg/g。金蝉花多糖具有较好的抗氧化能力,其清除DPPH自由基、·OH、O2-·的半抑制质量浓度(IC50)分别为28.99μg/mL、0.19mg/mL和0.30mg/mL。  相似文献   

10.
紫荆花中多糖的微波提取工艺优化及其抗氧化活性   总被引:2,自引:0,他引:2  
卫强  桂芹  邱镇  徐飞  纪小影 《食品科学》2015,36(4):39-44
在单因素试验的基础上,采用Box-Behnken试验设计和响应面分析法,研究提取时间、微波功率、液料比对紫荆花中多糖提取量的影响,建立影响因素与响应值之间的数学模型,确立最佳提取工艺。同时,以1,1-二苯基-2-三硝基苯肼自由基清除能力、还原Fe3+能力、羟自由基清除能力验证紫荆花中多糖的抗氧化活性。结果表明,紫荆花中多糖的最佳提取工艺为:提取时间16 min、液料比40∶1(mL/g)、微波功率2 kW。此条件下提取量可达30.81 mg/g。抗氧化实验结果表明,紫荆花多糖有一定抗氧化活性。比较微波和煮沸两种方法提取的紫荆花多糖活性和提取效率,发现微波提取更佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号