首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypeptide components of the phencyclidine (PCP) receptor present in rat hippocampus were identified with the photolabile derivative of phencyclidine [3H]azidophencyclidine ( [3H]AZ-PCP). The labeled affinity probe was shown to reversibly bind to specific sites in the dark. The number of receptor sites bound is equal to those labeled by [3H]PCP, and their pharmacology and stereospecificity are identical with those of the PCP/sigma-opiate receptors. The dissociation constant of [3H]AZ-PCP from these receptors is 0.25 +/- 0.08 microM. Photolysis of hippocampus membranes preequilibrated with [3H]AZ-PCP, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed the existence of five major labeled bands of which a Mr 90 000 band and a Mr 33 000 band were heavily labeled. Inhibition experiments, in which membranes were incubated with [3H]AZ-PCP in the presence of various PCP analogues and opiates, indicate that labeling of both the Mr 90 000 band and the Mr 33 000 band is sensitive to relatively low concentrations (10 microM) of potent PCP/sigma receptor ligands, while similar concentrations of levoxadrol, naloxone, morphine, D-Ala-D-Leu-enkephalin, atropine, propranolol, and serotonin were all ineffective. Stereoselective inhibition of labeling of the Mr 90 000 band and of the Mr 33 000 band was also observed by the use of dexoxadrol and levoxadrol. The Mr 33 000 band was not as sensitive as the Mr 90 000 band to inhibition by the selective PCP receptor ligands N-[1-(2-thienyl)cyclohexyl]piperidine and PCP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The biosynthesis and carbohydrate processing of the insulin receptor were studied in cultured human lymphocytes by means of metabolic and cell surface labeling, immunoprecipitation with anti-receptor autoantibodies, and analysis on sodium dodecyl sulfate-polyacrylamide gels under reducing conditions. In addition to the two major subunits of Mr = 135,000 and Mr = 95,000, two higher molecular weight bands were detected of Mr = 210,000 and Mr = 190,000. The Mr = 210,000 band and the two major subunits were labeled by [3H]mannose, [3H]glucosamine, [3H]galactose, and [3H]fucose, and were bound by immobilized lentil, wheat germ, and ricin I lectins. On the other hand, the Mr = 190,000 band was labeled only by [3H]mannose and [3H]glucosamine and was bound only by lentil lectin. All four components could be labeled with [35S] methionine; however, in contrast with the other three polypeptides, the Mr = 190,000 band was not labeled by cell surface iodination with lactoperoxidase, suggesting that it is not exposed at the outer surface of the plasma membrane. Pulse-chase studies with [3H]mannose showed that the Mr = 190,000 was the earliest labeled component of the receptor; radioactivity in this band reached a maximum 1 h after the pulse, clearly preceded the appearance of the other components, and had a very brief half-life (t1/2 = 2.5 h). The Mr = 210,000, Mr = 135,000, and Mr = 95,000 bands were next in appearance and reached a maximum 6 h in the chase period. Monensin, an ionophore which interferes with maturation of some proteins, blocked both the disappearance of the Mr = 190,000 protein and the appearance of the Mr = 135,000 and Mr = 95,000 subunits. The mannose incorporated in the Mr = 190,000 component was fully sensitive to treatment with endoglycosidase H while that in the Mr = 210,000 band and the two major subunits was only partially sensitive. Tryptic fingerprints of the 125I-labeled Mr = 210,000 band suggested that this component contains peptides of both the Mr = 135,000 and Mr = 95,000 subunits. In conclusion, the Mr = 190,000 component appears to represent the high mannose precursor form of the insulin receptor that undergoes carbohydrate processing and proteolytic cleavage to generate the two major subunits. In addition, the Mr = 210,000 band is probably the fully glycosylated form of the precursor that escapes cleavage and is expressed in the plasma membrane.  相似文献   

3.
The subunit composition of the thyrotropin (TSH) receptor has been characterized using the bifunctional crosslinking agent, disuccinimidyl suberate (DSS), to covalently link [125I]TSH to its receptor. Purified thyroid membranes were labeled with [125I]TSH, and the hormone-receptor complex was crosslinked by incubation with 0.1 mM DSS. Analysis of this crosslinked complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions indicated the presence of a specifically labeled hormone-receptor complex, corresponding to a Mr of 68,000 +/- 3000 before correction for the relative molecular mass of TSH. When reducing agents were absent during SDS solubilization, the mobility of the band increased slightly, suggesting the presence of intramolecular disulfide bonds. The labeling of the 68,000 band was specifically inhibited by TSH, but not by other glycoprotein hormones. Specific labeling occurred only in thyroid, and not in liver or muscle plasma membranes. Protease-free immunoglobulin G, isolated from sera of patients with Graves' disease and capable of competing with TSH for binding to its receptor, inhibited the labeling of the 68,000 complex. When the hormone-receptor complex was crosslinked with higher concentrations of DSS (greater than 0.3 mM), a second specifically labeled band was observed, with a Mr of 80,000 +/- 5000. This complex exhibited hormone, tissue, and immunologic specificities similar to those of the 68,000 band. Continuous sucrose density gradient analysis indicated that the intact solubilized receptor possessed a sedimentation coefficient of 10.5 S prior to correction for detergent binding. However, this value increased to 16 S when determined under conditions which took into account the change in hydrodynamic properties attributable to bound Triton X-100. These data suggest that the 80,000 and 68,000 bands represent binding components of the TSH receptor and that the receptor molecule most likely contains multiple subunits, linked by noncovalent forces.  相似文献   

4.
Brain CCK receptors are structurally distinct from pancreas CCK receptors   总被引:3,自引:0,他引:3  
Brain and pancreas cholecystokinin (CCK) receptors differ markedly in their selectivity for CCK analogs. To determine the size and subunit structure of the brain CCK receptor and compare it to that of the pancreas, 125I-CCK33 was covalently cross-linked with ultraviolet light to its receptor on mouse brain particles and purified pancreatic plasma membranes. When CCK was crosslinked to brain membranes, a single consistent major labeled protein band of Mr = 55,000 was observed in both the presence and the absence of DTT. These data with brain receptors contrast to results with pancreatic receptors where two bands of Mr = 120,000 and 80,000 are labeled in the absence and presence of DTT, respectively. These studies indicate, therefore, that the brain and pancreas CCK receptors are structurally and functionally distinct.  相似文献   

5.
Mammalian beta-adrenergic receptor binding peptides can be visualized by covalently labeling them with the photoaffinity reagent p-azido-m-[125I]iodobenzylcarazolol followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The receptor peptides migrate as broad bands of Mr approximately equal to 62,000. In the present study, we examined the carbohydrate composition of the mammalian beta receptor through the use of specific exo- and endoglycosidases and lectin affinity chromatography. Treatment of p-azido-m-[125I]iodobenzylcarazolol-labeled beta2-adrenergic receptors from hamster lung or rat erythrocyte with the exoglycosidases neuraminidase and alpha-mannosidase provided evidence for the existence of both high mannose and complex type carbohydrate chains on beta 2-adrenergic receptors. The nonadditivity of the effect of sequential treatments with these enzymes suggested discrete populations of beta-adrenergic receptors containing either complex or high mannose type chains. Deglycosylation of receptor with endoglycosidase F results in a single labeled polypeptide at Mr = 49,000 for both systems. The same two populations of the beta receptors (high mannose or complex type chain) could also be fractionated by lectin affinity chromatography of solubilized p-azido-m-[125I]iodobenzylcarazolol-labeled receptors. The high mannose-containing receptors could be absorbed to and specifically eluted from concanavalin A-agarose. Those containing complex type carbohydrates could be adsorbed to and eluted from wheat germ agglutinin-agarose. Taken together, these data suggest that mammalian beta-adrenergic receptors contain both complex and high mannose type carbohydrate chains and that microheterogeneity of these chains likely explains the broad band pattern typically obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

6.
125I-CCK was crosslinked with ultraviolet light to its receptor on pancreatic plasma membranes. The predominant labeled species following polyacrylamide gel electrophoresis had a molecular weight of 120,000 in the absence, and 80,000 in the presence of the reducing agent dithiothreitol. The Mr = 120,000 labeled band could be extracted, reduced and converted to Mr = 80,000. Moreover, peptide mapping with Staph aureus V8 protease showed a similar pattern for the 120,000 and 80,000 dalton bands. The crosslinked receptor could be solubilized with Triton X-100, absorbed to wheat germ agglutinin and eluted with N-acetylglucosamine. The results indicate, therefore, that the CCK receptor is a glycoprotein with subunits coupled by disulfide bonds.  相似文献   

7.
Cell surface receptors for immunoglobulin E were isolated by repetitive affinity chromatography from rat basophilic leukemia cells biosynthetically labeled with L-[35S]methionine and D-[3H]mannose. Native immunoglobulin E receptor appeared as a very broad band in the 45,000 to 62,000 Mr region in sodium dodecyl sulfate polyacrylamide gels. However, from cells cultured in the presence of tunicamycin, a relatively narrow band with an apparent Mr of 38,000 was isolated. The 38,000 Mr band rebound to immunoglobulin E-Sepharose, was immunoprecipitated with antibodies to immunoglobulin E receptor, shared tryptic peptides with native receptor, and was labeled with L-[35S]methionine but not D-[3H]mannose, and thus appears to be immunoglobulin E receptor lacking N-linked oligosaccharides. It is demonstrated that N-linked oligosaccharides account for much of the apparent heterogeneity of native receptor in sodium dodecyl sulfate polyacrylamide gels and in two-dimensional gel electrophoresis. A receptor-associated protein with apparent Mr = 30,000, prominently labeled with L-[35S]methionine but not with D-[3H]mannose, did not have altered molecular properties when isolated from tunicamycin-cultured cells, and did not share tryptic peptides with receptor.  相似文献   

8.
G J Chin 《Biochemistry》1985,24(21):5943-5947
Purified dog kidney (Na+,K+)-ATPase was reacted with tritiated sodium borohydride after treatment with neuraminidase and galactose oxidase. This procedure did not affect the ATPase activity of the enzyme, and all of the covalently bound radioactivity was found in the beta subunit (Mr 54 000). Papain digestion of the tritiated enzyme produced two labeled fragments of Mr 40 000 and 16 000. Further proteolysis generated an Mr 31 000 peptide from the larger fragment. Unlike the tryptic and chymotryptic sites of the alpha subunit, the sites of papain hydrolysis were insensitive to conformations of the (Na+,K+)-ATPase. Determination of the NH2-terminal sequences was used to arrange the fragments within the linear map of the beta chain. Finally, none of the labeled peptides was released from the membrane under nondenaturing conditions. These results are consistent with a model of the beta subunit containing a 40 000-dalton NH2-terminal piece and a 16 000-dalton COOH-terminal piece. Both fragments have extracellularly exposed carbohydrate and at least one membrane-bound domain.  相似文献   

9.
Dopamine D2 receptor binding subunits of the porcine anterior pituitary were visualized by autoradiography following photoaffinity labeling with [125I]N-azidophenethylspiperone and sodium dodecyl-sulfate polyacrylamide gel electrophoresis. The ligand binding subunit comprising the pituitary D2 dopamine receptor migrated as two distinct bands of apparent Mr approximately equal to 150,000 and 118,000, substantially higher than neuronal D2 receptor subunits from porcine or canine brain. The glycoprotein nature of pituitary D2 receptor binding subunits was investigated by the use of exo- and endo-glycosidase treatments and peptide mapping experiments. Photoaffinity labeled polypeptides of the anterior pituitary were susceptible to both neuraminidase and alpha-mannosidase digestion as indexed by their increased electrophoretic mobility on sodium dodecyl-sulfate polyacrylamide gels, and suggests the presence of both complex type and terminal mannose carbohydrate residues. Moreover, the additive effects of sequential treatment with these enzymes suggests that both types of carbohydrate chains are present on each receptor peptide. N-linked deglycosylation of pituitary D2 photolabeled receptors with glycopeptidase-F produced a further increase in the mobility of the labeled protein to apparent Mr approximately equal to 44,000, similar to that of deglycosylated D2 binding subunits of porcine and canine brain. Peptide mapping experiments following limited proteolysis with Staphylococcus aureus V8 proteinase and papain demonstrated that deglycosylated D2 dopamine receptors (Mr = 44,000), in different tissues and species, were homologous. Taken together, these data suggest that despite the differences in the overall molecular weight and tissue specific glycosylation pattern of pituitary D2 dopamine receptors, the primary structure of mammalian D2 receptors appears to be conserved.  相似文献   

10.
A simple method is described that permitted rapid isolation of plasma membranes from mouse N-18 neuroblastoma cells. The purified plasma membranes gave a 10-fold increase in the specific activity of incorporated [3H]fucose over that of the cell homogenate. The specific activities of two other membrane markers, 5′-nucleotidase and alkaline phosphatase, increased 11-fold and 15-fold, respectively. Metabolic labeling with [3H]fucose identified a major fucosyl glycoprotein with apparent molecular weight of 92 000. Three surface labeling methods together with SDS-polyacrylamide gel electrophoresis and fluorography were used to characterize and compare the surface glycoproteins of undifferentiated and differentiated N-18 cells. The galactose oxidase/NaB3H4 method labeled two major galactoproteins (Mr = 52 000, 42 000) in both undifferentiated and differentiated cells. The neuraminidase/galactose oxidase/NaB3H4 method revealed many sialylgalactoproteins. Among them, the 220-kdalton, 150-kdalton and 130-kdalton bands were at least 100% more prominently labeled in the differentiated calls whereas the 76-kdalton and 72-kdalton bands were less prominently labeled in the differentiated cells when compared to their undifferentiated counterparts. The prominently iodinated protein bands in the undifferentiated cells had apparent molecular weights of 130 000, 92 000, 76 000 and 72 000 as compared to 150-, 130-, 92- and 76-kdalton bands in the differentiated cells. The labeling data obtained will enable us to further study the changes of these identified surface glycoproteins, both quantitatively and topologically, during the differentiation of neuroblastoma cells.  相似文献   

11.
Interleukin 3 (IL-3) derived from mouse T cells was biosynthetically labeled with either [35S]methionine or [3H]mannose, affinity-purified using various anti-IL-3 antibodies, and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography revealed the same three major bands with Mr values of 21,500-22,500, 27,000-31,000, and 32,000-36,000, irrespective of whether the anti-IL-3 antibody had been directed to the N or C termini of the IL-3 polypeptide. Bioassay of eluates from the gels confirmed that all three bands exhibited IL-3 bioactivity. IL-3 produced from two nonphysiological sources, the myelomonocytic leukemia WEHI-3B or Cos 7 cells that had been transfected with an IL-3 cDNA clone, had in each case a different pattern of microheterogeneity. Treatment with either tunicamycin or N-glycanase resulted in IL-3 running as one band with Mr 16,000, corresponding to its 140-amino acid polypeptide chain. No evidence for proteolytic processing was detected. These results show that the Mr heterogeneity of IL-3 was highly dependent on the cellular source and is due to N-linked glycosylation.  相似文献   

12.
The platelet-derived growth factor (PDGF) receptor is a single membrane-spanning polypeptide of 180,000 daltons with a ligand-stimulatable tyrosine kinase site. We have investigated changes in the structure and association state of the receptor that are induced by ligand binding, but which precede autophosphorylation. Chemical cross-linking of PDGF-bound 32P-labeled receptor and 125I-PDGF-labeled receptor resulted in the generation of a radiolabeled cross-linked complex of 370-390 kDa. This band, as well as the 180-190-kDa PDGF receptor band, were recognized by a PDGF receptor-specific antipeptide antibody. The appearance of the 370-390-kDa band was PDGF-dependent and was seen irrespective of whether the receptor was membrane-bound, solubilized, or highly (approximately 90%) purified. Sedimentation analysis of the 125I-PDGF cross-linked receptor showed that both 180-190- and 370-390-kDa labeled species sedimented as a single peak at about 11.5 S, a position expected of a receptor dimer, demonstrating that the liganded receptor exists essentially as a dimer. In contrast, unliganded receptors sedimented as a single species at 7 S, a position consistent with a monomeric structure. The monomer-dimer interconversion was absolutely ligand-dependent and occurred independent of autophosphorylation. These results demonstrate and intimate correlation between PDGF binding and inter-receptor bond formation, and raise the possibility that the phenomenon may be causally linked to the process of kinase activation.  相似文献   

13.
To examine the relationship between glycoprotein Ib and other proteins in the platelet membrane and the interaction of this protein with thrombin, platelets were crosslinked by two cleavable reagents, SADP (N-succinimidyl(4-azidophenyldithio)propionate) and DTSSP (3,3′-dithiobis(sulfosuccinimidyl propionate)). Two-dimensional, unreduced-reduced sodium dodecyl sulphate (SDS)-polyacrylamide electrophoresis and staining by silver or wheat germ agglutinin-conjugated peroxidase, after protein transfer to nitrocellulose, demonstrated that SADP intramolecularly crosslinked glycoprotein Ib and formed intermolecular complexes of glycoprotein IIb and some high molecular weight proteins. DTSSP intermolecularly crosslinked glycoprotein Ib, glycoprotein IIb, and other high molecular weight proteins. With a low concentration of 125I-labeled TLCK-thrombin (6 nM), crosslinking with SADP yielded a 200 000 Da complex containing radioactive-labeled thrombin, and high TLCK-thrombin concentration (0.1 μM) gave the complex and a 167 000 band. α- and TLCK-thrombin crosslinking with DTSSP also yielded the 200 000 complex, with the remaining radioactivity in a band corresponding to a highly crosslinked complex. The 200 000 complex formed by reaction with SADP or DTSSP was markedly reduced by preincubation of platelets with excess unlabeled TLCK-thrombin and had a pI similar to glycoprotein Il. These results suggest that glycoprotein Il is one of the proteins composing the high affinity receptor for thrombin.  相似文献   

14.
Li JG  Chen C  Liu-Chen LY 《Biochemistry》2007,46(38):10960-10970
We examined glycosylation of FLAG-hKOR expressed in CHO cells and determined its functional significance. FLAG-hKOR was resolved as a broad and diffuse 55-kDa band and a less diffuse 45-kDa band by immunoblotting, indicating that the receptor is glycosylated. Endoglycosidase H cleaved the 45-kDa band to approximately 38 kDa but did not change the 55-kDa band, demonstrating that the 45-kDa band is N-glycosylated with high-mannose or hybrid-type glycan. Peptide-N-glycosidase F digestion of solubilized hKOR or incubation of cells with tunicamycin resulted in two species of 43 and 38 kDa, suggesting that the 43-kDa band is O-glycosylated. FLAG-hKOR was reduced to lower Mr bands by neuraminidase and O-glycosidase, indicating that the hKOR contains O-linked glycan. Mutation of Asn25 or Asn39 to Gln in the N-terminal domain reduced the Mr by approximately 5 kDa, indicating that both residues were glycosylated. The double mutant hKOR-N25/39Q was resolved as a 43-kDa (mature form) and a 38-kDa (intermediate form) band. When transiently expressed, hKOR-N25/39Q had a lower expression level than the wild type. In CHO cells stably expressing the hKOR-N25/39Q, pulse-chase experiments revealed that the turnover rate constants (ke) of the intermediate and mature forms were approximately 3 times those of the wild type. In addition, the maturation rate constant (ka) of the 43-kDa form of hKOR-N25/39Q was 6 times that of the mature form of the wild type. The hKOR-N25/39Q mutant showed increased agonist-induced receptor phosphorylation, desensitization, internalization, and downregulation, without changing ligand binding affinity or receptor-G protein coupling. Thus, N-glycosylation of the hKOR plays important roles in stability and trafficking along the biosynthesis pathway of the receptor protein as well as agonist-induced receptor regulation.  相似文献   

15.
Biosynthesis of the human IFN gamma receptor was studied using metabolic labeling techniques and immunoprecipitation with receptor-specific monoclonal antibodies. Colo-205 and HepG2 cells labeled with [35S]methionine gave rise to two components with molecular mass 75 and 90 kDa following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. No bands were detected when immunoprecipitation was performed using irrelevant monoclonal IgG or in the presence of excess ligand, a condition known to block antibody-receptor interaction. When Colo-205 were labeled for increasing periods of time, the 75-kDa form was detected after 5 min, whereas the 90-kDa form appeared only after 60 min. Pulse-chase analysis established that the 75-kDa form was the precursor of the 90-kDa component. Only the 90-kDa form was detected on extrinsically radioiodinated Colo-205 cell surfaces. This observation was confirmed by Western blot analysis of isolated Colo-205 membranes. Digestion of labeled precipitates with peptide:N-glycosidase F caused a 22% reduction in the apparent molecular weight of the IFN gamma receptor. Receptor derived from tunicamycin-treated Colo-205 labeled for 5 min displayed a single molecular mass of 65 kDa and expressed ligand binding activity. Longer labeling periods in the presence of tunicamycin revealed the appearance of a second ligand-binding form of 70 kDa. Thus, Colo-205 IFN gamma receptors carry asparagine (N)-linked oligosaccharides and possibly some other form of post-translational modification.  相似文献   

16.
Two monoclonal antibodies against the receptor for platelet-derived growth factor (PDGF) were obtained by immunizing mice with pure PDGF receptor preparations derived from porcine uterus. The antibodies, denoted PDGFR-B1 and PDGFR-B2, both bound to the external domain of the receptor, as demonstrated by indirect immunofluorescence and binding of 125I-labeled antibodies to intact human fibroblasts. Both antibodies precipitated pure 175-kDa 32P-labeled autophosphorylated porcine PDGF receptor as well as a Mr 175,000 glycoprotein from metabolically labeled cells. The monoclonal antibodies did not inhibit binding of 125I-PDGF to human fibroblasts and did not stimulate these cells to undergo mitosis. Both antibodies induced clustering and down-regulation of their antigen. However, this resulted in only a partial loss of cell surface binding sites for PDGF itself, consistent with the conclusion that the monoclonals recognized only one of two or several receptors for PDGF. Clustering and down-regulation were not seen when the cells were incubated with monovalent Fab' fragments of the PDGFR-B2 antibody. The antibodies also stimulated autophosphorylation of pure PDGF receptor, and PDGFR-B2 was shown to stimulate phosphorylation of phosphofructokinase, an exogenous substrate for the PDGF receptor kinase. High concentrations of PDGFR-B2 antibody, or Fab' fragments thereof, failed to enhance the PDGF receptor kinase activity, compatible with the possibility that dimerization was of importance in the antibody-stimulated kinase activity of purified PDGF receptors.  相似文献   

17.
Receptors for cholecystokinin (CCK) on gallbladder muscularis smooth muscle have different apparent sizes in man (Mr = 85,000-95,000) and cow (Mr = 70,000-85,000). In this work, these receptors were demonstrated to represent N-linked complex glycoproteins with Mr = 43,000 protein cores, based on lectin-affinity chromatography and the deglycosylation of bands affinity labeled with 125I-D-Tyr-Gly-[(Nle28,31, pNO2-Phe33)CCK-26-33] using neuraminidase, O-glycanase and endoglycosidases H and F. Similarities in the core proteins were further demonstrated by Staphylococcus aureus V8 protease peptide mapping, in which both proteins yielded similar fragment patterns. Thus, gallbladder CCK receptors present in man and cow are both N-linked complex glycoproteins, with different carbohydrate domains and similar protein cores.  相似文献   

18.
An enzymatic test is described which allows the localization of yeast invertase activity directly on sodium dodecyl sulfate gels. When crude membrane fractions are prepared from Saccharomyces cerevisiae cells which are actively synthesizing external invertase, these membranes show an activity band on sodium dodecyl sulfate gels additional to the external and the internal invertase. In the soluble fraction this form was completely absent. It has a molecular weight of approximately 190 000 and was 50 000 smaller than the external invertase. It showed kinetic characteristics of a precursor of the external enzyme. Thus it appeared transiently, when yeast cells were shifted from a condition of non-synthesizing external invertase to one where the enzyme was synthesized. When the increase in the external enzyme slowed down after some time, the membrane-associated form almost completely disappeared.The addition of tunicamycin to yeast cells synthesizing external invertase inhibited further synthesis of the enzyme by 97%; also the formation of the membrane-associated form was strongly inhibited. The amount of it present before the addition of tunicamycin completely disappeared in the presence of the antibiotic. The precursor form, therefore, seems to possess already those carbohydrate parts which contain N-acetylglucosamine and are transferred via dolichyl phosphate-bound intermediates. The membrane-associated precursor amounts to less than 5% of the total invertase activity of a yeast cell.  相似文献   

19.
Affinity labeling of the rat pancreatic cholecystokinin (CCK) receptor with decapeptide probes has identified an Mr = 85,000-95,000 protein, distinct from the Mr = 80,000 component previously labeled with 125I-Bolton Hunter-CCK-33. We have characterized the carbohydrate composition of this novel protein labeled with 125I-D-Tyr-Gly-[(Nle28,31)-CCK-26-33] and disuccinimidyl suberate by using chemical and enzymatic deglycosylation and lectin chromatography. The Mr = 85,000-95,000 component was demonstrated to be an N-linked sialoglycoprotein based on neuraminidase digestion to Mr = 75,000-85,000 and endo-beta-N-acetylglucosaminidase F (Endo F) digestion to Mr = 42,000. This was distinct from the Mr = 65,000 product of Endo F digestion of the protein labeled with 125I-Bolton Hunter-CCK-33. Lack of an effect of endo-beta-N-acetylglucosaminidase H demonstrated the absence of N-linked simple oligosaccharides, while products of chemical deglycosylation with hydrogen fluoride and endo-alpha-N-acetylgalactosaminidase supported the absence of O-linked carbohydrate. The presence of at least four oligosaccharide chains on the core protein was suggested by Endo F digestion of the Mr = 85,000-95,000 protein using limiting enzyme conditions. This glycoprotein was retained on wheat germ agglutininagarose and eluted by N,N',N"-triacetylchitotriose. Identification of the Mr = 85,000-95,000 component on the ectodomain of the plasmalemma of intact pancreatic acini confirmed this to be the fully processed form of the CCK-binding protein.  相似文献   

20.
Antisera to the human erythrocyte Glc transporter immunoblotted a polypeptide of Mr 55,000 in membranes from human hepatocarcinoma cells, Hep G2, human fibroblasts, W138, and murine preadipocytes, 3T3-L1. This antisera immunoprecipitated the erythrocyte protein which had been photoaffinity labeled with [3H]cytochalasin B, immunoblotted its tryptic fragment of Mr 19,000, and immunoblotted the deglycosylated protein as a doublet of Mr 46,000 and 38,000. This doublet reduced to a single polypeptide of Mr 38,000 after boiling. When Hep G2, W138, and 3T3-L1 cells were metabolically labeled with L-[35S]methionine for 6 h, a broad band of Mr 55,000 was immunoprecipitated from membrane extracts. In pulse-chase experiments, two bands of Mr 49,000 and 42,000 were identified as putative precursors of the mature transporter. The t1/2 for mature Glc transporter was 90 min for Hep G2 cells that had been starved for methionine (2 h) and pulsed for 15 min with L-[35S]methionine. Polypeptides of Mr 46,000 and 38,000 were immunoprecipitated from Hep G2 cells that had been metabolically labeled with L-[35S]methionine in the presence of tunicamycin. This doublet reduced to the single polypeptide of Mr 38,000 after boiling. In the absence of tunicamycin, but not in its presence, mature polypeptide of Mr 55,000 was immunoprecipitated from Hep G2 cells metabolically labeled with D-[3H]GlcN. A polypeptide of Mr 38,000 was observed in boiled immune complexes from the in vitro translation products of Hep G2, W138, and 3T3-L1 cell RNA. Dog pancreatic microsomes cotranslationally, but not posttranslationally, converted this to a polypeptide of Mr 35,000. A model for Glc transporter biogenesis is proposed in which the primary translation product of Mr 38,000 is converted by glycosylations to a polypeptide of Mr 42,000. The latter is then processed via heterogeneous complex N-linked glycosylations to form the mature Glc transporter, Mr 55,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号