首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The feasibility of using a permeabilized preparation of human SH-SY-5Y neuroblastoma cells for studies of muscarinic acetylcholine receptor (mAChR) sequestration has been evaluated. Exposure of cells permeabilized with digitonin, streptolysin-O, or the α-toxin from Staphylococcus aureus to oxotremorine-M (Oxo-M) for 30 min resulted in a 25–30% reduction in the number of cell surface mAChRs, as monitored by the loss of N[3H]methyl- scopolamine ([3H]NMS) binding sites. The corresponding value for intact cells was 40%. For cells permeabilized with 20 μM digitonin, the Oxo-M-mediated reduction in [3H]NMS binding was time (t1/2~ 5 min) and concentration (EC50~ 10 μM) dependent and was agonist specific (Oxo M > bethanechol = arecoline = pilocarpine). In contrast, no reduction in total mAChR number, as monitored by the binding of [3H]quinuclidinyl benzilate, occurred following Oxo-M treatment. The loss of [3H]NMS sites observed in the presence of Oxo-M was unaffected by omission of either ATP or Ca2+, both of which are required for stimulated phosphoinositide hydrolysis, but could be inhibited by the inclusion of guanosine 5′-O-(2-thiodiphosphate). mAChRs sequestered in response to Oxo-M addition were unmasked when the cells were permeabilized in the presence of higher concentrations of digitonin (80 μM). The results indicate (a) that permeabilized SH-SY-5Y cells support an agonist-induced sequestration of mAChRs, the magnitude of which is ~ 65–70% of that observed for intact cells, (b) that when internalized, mAChRs are located in a cellular compartment to which [3H]NMS has only a limited access despite the removal of the plasma membrane barrier, and (c) that the production of phosphoinositide-derived second messengers is not a prerequisite for mAChR sequestration.  相似文献   

2.
Preincubation of murine neuroblastoma cells (clone N1E-115) with terbium chloride resulted in a significant potentiation of carbachol-mediated increase in cyclic GMP formation. This effect was accompanied by a shift of the peak response from 30 s to 120 s and a 6-fold decrease in carbachol concentration producing half-maximal responses, in addition to a significant increase in the Hill coefficient. Terbium ions also caused a significant decrease in the affinity and an increase in the maximum binding of [3H]quinuclidinyl benzilate to muscarinic receptors, the change in affinity being mainly due to a decrease in the association rate. Preincubation of cells with 1 mM carbachol for 4 h (the desensitized state of the muscarinic receptor) resulted in a decrease in the ability of terbium to alter [3H]quinuclidinyl benzilate binding. The effects of terbium reported here might be due to its affecting muscarinic receptor-effector coupling, which is considered to be lost upon receptor desensitization.  相似文献   

3.
The effect of compounds that activate sodium channels on the number of muscarinic acetylcholine receptors in neuroblastoma NIE 115 cells has been investigated. The cells were used in electrically unexcitable ("control" cells) and excitable ("differentiated" cells) states. Although receptor assays using a single concentration of the radioligand [3H]scopolamine methyl chloride indicated a loss of receptors after a 6-h incubation of cells with veratrine, no true loss of receptors was seen with any of the compounds tested (veratridine, veratrine, aconitine) when full saturation analyses were performed in either control or differentiated cells. The apparent receptor loss seen with veratrine was due to a muscarinic receptor-active component of veratrine (not veratridine) occluded by the cells and released into the binding assays upon cell breakage. Veratridine and aconitine have a very low affinity for muscarinic acetylcholine receptors, and the binding of carbamoylcholine to the receptors is unaffected by tetrodotoxin, so that there is no evidence in this system for interaction between muscarinic receptors and sodium channels.  相似文献   

4.
Abstract

The binding characteristics of [3H]quinuclidinyl benzilate ([3H]QNB) to isolated crude membranes of cultured bovine aortic endothelial cells were investigated. [3H]QNB bound to endothelial cell membranes with high affinity (kD = 0.056 nM) and limited capacity (132 fmol/mg DNA). The binding specificity, order of affinity and inhibition constants (Ki) were determined by displacement of bound [3H]QNB with unlabeled ligands. The order of affinity was QNB > atropine > 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP) > p-fluoro-hexahydro-sila-difenidol (p-F-HHSiD) (M3 antagonist) > pirenzepine (M1 antagonist) > AFDX-116 (M2 antagonist) > (4-hydroxy-2-butynyl) trimethylammonium chloride m-chlorocarbanilate (McN-A-343, M1 agonist). These observations suggest that muscarinic receptors of endothelial cells in culture are likely to be of M3 and M1 subtype. Northern blot analysis of receptor subtypes using cDNA probes did not provide conclusive results due to the low level expression of these receptors in cultured cells. Solubilization of protein bound [3H]QNB with 1% digitonin and 0.02% cholate followed by analysis on sucrose density gradients demonstrated the presence of a specifically bound [3H]QNB-protein complex sedimenting at the 6.2S region of the gradient. These data demonstrate the presence of muscarinic acetylcholine receptor protein in cultured bovine aortic endothelial cells.  相似文献   

5.
We have investigated the coupling of muscarinic acetylcholine receptors (mAChR) to phospholipid hydrolysis in a human neuroblastoma cell line, LA-N-2, by measuring the formation of 3H-inositol phosphates (3H-IP) and of [3H]phosphatidylethanol ([3H]PEt) in cells prelabeled with [3H]inositol and [3H]oleic acid. The muscarinic agonist carbachol (CCh) stimulated the phospholipase C (PLC)-mediated formation of 3H-IP in a time- and dose-dependent manner (EC50 = 40-55 microM). In addition, in the presence of ethanol (170-300 mM), CCh elevated levels of [3H]PEt [which is regarded as a specific indicator of phospholipase D (PLD) activity] by three- to sixfold. The effect of CCh on PEt formation also was dose dependent (EC50 = 50 microM). Both effects of CCh were antagonized by atropine, indicating that they were mediated by mAChR. Incubation of LA-N-2 cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA, 0.1 microM; 10 min) increased [3H]PEt levels by up to 10-fold. This effect was inhibited by the protein kinase C (PKC) inhibitor staurosporine (1 microM) or by pretreatment for 24 h with 0.1 microM PMA, by 74% and 65%, respectively. In contrast, the effect of CCh on PEt accumulation was attenuated by only 28% in the presence of staurosporine (1 microM). In summary, these results suggest that, in LA-N-2 neuroblastoma cells, mAChR are coupled both to phosphoinositide-specific PLC and to PLD. PKC is capable of stimulating PLD activity in these cells; however, it is not required for stimulation of the enzyme by mAChR activation.  相似文献   

6.
7.
目的:探讨小分子化合物D609对脑神经瘤细胞Neuro-2a的生长抑制及诱导细胞周期阻滞的效应,并初步研究其机制。方法:采用CCK-8法检测D609对Neuro-2a细胞的生长抑制作用;利用流式细胞术(FACS)检测D609处理对细胞周期进程的影响;利用免疫印迹实验(Western blot)检测不同浓度的D609处理后,细胞裂解液中细胞周期蛋白抑制因子p27的表达水平。结果:CCK-8的实验结果显示,加入150μmol/L D609处理72小时后,细胞生长受到明显地抑制,且伴有剂量依赖效应;流式细胞术的结果表明,D609处理使细胞周期阻滞在G0/G1期;免疫印迹的结果表明药物处理提升了p27的表达,且随药物浓度升高其表达亦增强。结论:D609可以有效地抑制Neuro-2a细胞的生长;进一步研究表明药物处理可以提升p27的表达水平并可以诱导将细胞阻滞在G0/G1期。因此,此研究将为脑神经瘤的治疗提供借鉴。  相似文献   

8.
Abstract

Human M2 receptors were expressed using the baculovirus expression system in three different insect cell lines: Sf9, Sf21 and High5. The level of expression was slightly increased in Sf21 cells versus Sf9 cells. In contrast, High5 cells were not able to produce more recombinant protein than Sf9. We also show that in both Spodoptera frugiperda cell lines a peak of expression was reached after 6 days of infection, whereas in High5 cells, the maximum of expression occurred after 3 days. Immunodetection of m2 muscarinic receptor clearly shows that the expressed protein undergoes significant proteolysis in both the Sf9 and High5 cells, whereas in the Sf21 cells this phenomenon was less detectable. Additionally, we show that in all three cell lines, the expressed recombinant receptor was functional in that it was able to stimulate GTPγS binding in the presence of exogenous G-proteins. Analysis of the population of G-proteins (Gαi1o and Gβcommon) in Sf21 and High5 cells is provided.  相似文献   

9.
Neurochemical Research - The neuronal glycine transporter GlyT2 modulates inhibitory glycinergic neurotransmission and plays a key role in regulating nociceptive signal progression. The cholinergic...  相似文献   

10.
Abstract

The present study was conducted to localize and characterize the subtype(s) of muscarinic receptor involved in prostacyclin (PGI2) production elicited by the cholinergic transmitter acetylcholine (ACh) in various cell types in the rabbit heart. ACh increased PGI2 synthesis measured as 6-keto-PGF1α, in cultured coronary endothelial cells and freshly dissociated ventricular myocytes in a dose dependent manner but not in cultured coronary smooth muscle cells of rabbit heart. McN-A-343, a partially selective M1 muscarinic ACh receptor (mAChR) agonist, did not alter 6-keto-PGF1α synthesis in these cell types. ACh induced 6-keto-PGF1α synthesis in coronary endothelial cells and ventricular myocytes was not altered by a low concentration (10?8 M) of pirenzipine, an M1 mAChR antagonist but was reduced by a higher concentration (10?6 M). In coronary endothelial cells ACh induced 6-keto-PGF1α production was reduced by hexahydro-sila-difendial (HHSiD), an M3 mAChR antagonist, and in ventricular myocytes by both 11-(2-[(di-ethylamino) methyl]-1-piperidinyl]acetyl-5,11-dihydro-6-H-pyrido-[2,3-b]-benzodiazepine-6 one] (AF-DX 116), an M2 receptor antagonist, and HHSiD. The decrease by ACh of isoporterenol stimulated cAMP accumulation was minimized by AF-DX 116 but not by HHSiD or pirenzipine. Pertussis toxin treatment minimized ACh induced decrease in isoproterenol stimulated rise in cAMP and ATP release, but not ACh induced 6-keto-PGF1α synthesis. These data suggest that ACh stimulates prostacyclin production in coronary endothelial cells via M3 mAChR and in ventricular myocytes M2 and M3 mAChR. Moreover, ACh induced decrease in cAMP, but not the increase in 6-keto-PGF1α production, is mediated by pertussis toxin sensitive Gαi proteins in these cells.  相似文献   

11.
Forskolin and vasoactive intestinal polypeptide (VIP) were shown to increase cyclic AMP accumulation in a human neuroblastoma cell line, SK-N-SH cells. The alpha 2-adrenergic agonist UK 14304 decreased forskolin-stimulated cyclic AMP levels by 40 +/- 2%, with an EC50 of 83 +/- 20 nM. This response was blocked by pretreatment with pertussis toxin (PT) (EC50 = 1 ng/ml) or by the alpha 2-antagonists yohimbine, idazoxan, and phentolamine. Antagonist IC50 values were 0.3 +/- 0.1, 2.2 +/- 0.3, and 1.4 +/- 0.1 microM, respectively. This finding suggests the presence of normal inhibitory coupling of SK-N-SH cell alpha 2-adrenergic receptors to adenylate cyclase via the inhibitory GTP-binding protein species, Gi. Muscarinic receptors in many target cell types are coupled to inhibition of adenylate cyclase. However, in SK-N-SH cells, muscarinic agonists synergistically increased (67-95%) the level of cyclic AMP accumulation elicited by forskolin or VIP. EC50 values for carbamylcholine (CCh) and oxotremorine facilitation of the forskolin response were 1.2 +/- 0.2 and 0.3 +/- 0.1 microM, respectively. Pharmacological studies using the muscarinic receptor subtype-preferring antagonists 4-diphenylacetoxy-N-methylpiperidine, pirenzepine, and AF-DX 116 indicated mediation of this response by the M3 subtype. IC50 values were 14 +/- 1, 16,857 +/- 757, and 148,043 +/- 16,209 nM, respectively. CCh-elicited responses were unaffected by PT pretreatment. Muscarinic agonist binding affinity was indirectly measured by the ability of CCh to compete for [3H]quinuclidinyl benzilate binding sites on SK-N-SH cell membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The existence of specific gamma-aminobutyric acid (GABA)ergic receptors in testicular interstitial cells was investigated in the present study. Specific binding of [3H]GABA to interstitial cell membranes was found to be time- and temperature-dependent and varied according to Ca2+ concentration present in the incubation medium. We analyzed the ability of different GABAergic agonists and antagonists to displace the bound radioactivity. In the absence of Ca2+ (1 mM EDTA), GABA and the GABAergic agonist isoguvacine displaced the bound radioactivity. When the radioligand assay was performed in the presence of 2.5 mM CaCl2, the [3H]GABA specifically bound increased twofold. Under such conditions, the specific GABAergic agonist baclofen, as well as GABA and isoguvacine, displaced the [3H]GABA bound. Saturation analysis revealed the presence of a population of GABAA binding sites with a KD value of 45.2 nM and a maximal number of binding sites of 57.4 fmol/mg of protein. The maximal binding increased on addition of 2.5 mM CaCl2 to 102 fmol/mg of protein, indicating the existence of a second population of GABAergic receptors, i.e., type B, with essentially the same affinity. In addition, the incubation of testicular interstitial cells with GABA and baclofen resulted in an increase in androgen production. These results support a functional role of GABA in the neuroendocrine control of the male gonad.  相似文献   

13.
Abstract: Stimulation of muscarinic receptors by carbachol and activation of protein kinase C elicits the translocation of calmodulin (CaM) from membranes to cytosol in the human neuroblastoma cell line SK-N-SH. Our previous studies have suggested a role for protein kinase C in the regulation of CaM redistribution. To explore further the role of protein kinase C in carbachol-induced calmodulin translocation, we treated cells for 17 h with 12-O-tetradecanoylphorbol 13-acetate (TPA) to down-regulate protein kinase C isozymes or 72 h to differentiate the cells. Treatment of SK-N-SH cells for 17 h with 70 nM TPA nearly abolished the effect of carbachol on CaM redistribution. After 72 h of TPA, however, the cells appeared differentiated, and the ability of carbachol to increase cytosolic CaM levels was restored. In untreated control cells, the carbachol-mediated increase in cytosolic CaM content was mimicked by TPA and blocked by pretreatment with the selective protein kinase C inhibitor Ro 31-8220 at 10 µM. In the 72-h TPA-treated cells, however, the ability of TPA to increase cytosolic CaM levels was significantly reduced, and the action of carbachol was no longer blocked by Ro 31-8220. The effect of prolonged TPA treatment on select protein kinase C isozymes was examined by immunoblotting. Treatment of cells for either 17 or 72 h abolished the α-isozyme in the cytosol and reduced (17 h) or abolished (72 h) the content in the membranes. In both 17- and 72-h TPA-treated cells, the ε-isozyme was nearly abolished in the cytosol and slightly reduced in the membranes. Some protein kinase C activity may have been maintained during TPA treatment because the basal level of phosphorylation of the protein kinase C substrate myristoylated alanine-rich C kinase substrate was enhanced in cells treated for either 17 or 72 h with TPA. The potential dissociation of carbachol and protein kinase C in eliciting increases in cytosolic CaM content was a function of prolonged TPA treatment and not differentiation per se because carbachol-mediated increases in cytosolic CaM levels were inhibited by Ro 31-8220 in retinoic acid-differentiated SK-N-SH cells. This study demonstrates that continuous TPA treatment, although initially down-regulating the protein kinase C-mediated effect of carbachol on CaM redistribution, uncouples carbachol and protein kinase C at longer times.  相似文献   

14.
Abstract: When neuroblastoma cells were transferred to a medium of low (6 n M ) thiamine concentration, a 16-fold decrease in total intracellular thiamine content occurred within 8 days. Respiration and ATP levels were only slightly affected, but addition of a thiamine transport inhibitor (amprolium) decreased ATP content and increased lactate production. Oxygen consumption became low and insensitive to oligomycin and uncouplers. At least 25% of mitochondria were swollen and electron translucent. Cell mortality increased to 75% within 5 days. [3H]PK 11195, a specific ligand of peripheral benzodiazepine receptors (located in the outer mitochondrial membrane) binds to the cells with high affinity ( K D = 1.4 ± 0.2 n M ). Thiamine deficiency leads to an increase in both B max and K D. Changes in binding parameters for peripheral benzodiazepine receptors may be related to structural or permeability changes in mitochondrial outer membranes. In addition to the high-affinity (nanomolar range) binding site for peripheral benzodiazepine ligands, there is a low-affinity (micromolar range) saturable binding for PK 11195. At micromolar concentrations, peripheral benzodiazepines inhibit thiamine uptake by the cells. Altogether, our results suggest that impairment of oxidative metabolism, followed by mitochondrial swelling and disorganization of cristae, is the main cause of cell mortality in severely thiamine-deficient neuroblastoma cells.  相似文献   

15.
Muscarinic M2-receptors allow for divergent modes of allosteric action, depending on the structure of the allosteric modulator. Phthalimido-substituted bis(ammonio)alkane-type modulators belong to the common mode allosteric agents, whereas a physicochemically closely related bispyridinium-oxime with dichlorobenzyl-substituents at both ends is an atypical agent. Here, we compared the actions of stepwise shortened compounds composed of the phthalimido moiety and middle chains of either the bispyridinium- or the bis(ammonio)alkane-type. Allosteric interactions were measured in pig M2 receptors with the orthosteric probe [3H]N-methylscopolamine ([3H]NMS) to label the acetylcholine binding site of the receptors. Dissociation and equilibrium binding experiments revealed parallel structure/activity-relationships in both series of compounds with regard to the cooperativity of interaction with [3H]NMS and to the underlying binding affinities in radioligand-occupied and free receptors. In conclusion, the findings are in line with the hypothesis that the phthalimido-moiety, but not the middle chain, is pivotal for the topology of interaction with the M2-receptor protein.  相似文献   

16.
Abstract

Our previous data indicate that M3 muscarinic receptors mediate carbachol induced bladder contractions. The data presented here were obtained by selective alkylation of M3 receptors with 4-DAMP mustard and suggest that the M2 receptor subtype may be involved in inhibition of β-adrenergic receptor induced relaxation, therefore, allowing recontraction. Alkylation resulted in 85% of M3 receptors and 65% of M2 receptors unable to bind radioligand as demonstrated by subtype selective immunoprecipitation. Rat bladder strips subjected to our alkylation procedure contracted submaximally, and direct carbachol contractions were inhibited by antagonists with affinities consistent with M3 receptor mediated contraction. In contrast, the affinities of antagonists for inhibition of carbachol induced recontractions following isoproterenol stimulated relaxation in the presence of 90 mM KCI, indicated a contractile function for the M2 receptor that was not observed in control strips. In conclusion, these studies demonstrate a possible role for the M2 subtype in bladder smooth muscle contraction.  相似文献   

17.
18.
The binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured cardiac cells has been compared with the binding observed in homogenized membrane preparations. The antagonists [3H]quinuclidinyl benzilate and [3H]N-methylscopolamine bind to a single class of receptor sites on intact cells with affinities similar to those seen in membrane preparations. In contrast with the heterogeneity of agonist binding sites observed in membrane preparations, the agonist carbachol binds to a homogeneous class of low-affinity sites on intact cells with an affinity identical to that found for the low-affinity agonist site in membrane preparations in the presence of guanyl nucleotides. Kinetic studies of antagonist binding to receptors in the absence and presence of agonist did not provide evidence for the existence of a transient (greater than 30 s) high-affinity agonist site that was subsequently converted to a site of lower affinity. Nathanson N. M. Binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured heart cells.  相似文献   

19.
Abstract

Gallamine and d-tubocurarine inhibited (3H)N-methylscopolamine ((3H)NMS) binding to rat cardiac muscarinic receptors with I50 values of 0.7 μM and 22 μM, respectively. They decreased the association and dissociation rates of the two ligands (3H)NMS and (3H)Oxotremorine M ((3H)Oxo-M).

Gallamine interaction with muscarinic receptors was markedly inhibited by (3H)NMS and (3H)Oxo-M binding to the receptors. We were unable to demonstrate (3H)NMS or (3H)Oxo-M binding to the muscarinic receptor-gallamine complex.

By contrast, d-tubocurarine interaction with rat cardiac muscarinic receptors was facilitated by (3H)Oxo-M binding and only slightly inhibited by (3H)NMS binding to muscarinic binding sites. Furthermore, (3H)NMS and (3H)Oxo-M bound to the receptor-d-tubocurarine complex, indicating that the latter drug interacted with an allosteric site on cardiac muscarinic receptors but did not recognize the muscarinic binding site (at concentrations below 1 mM).  相似文献   

20.
The use of a panel of monoclonal antibodies (mAbs) directed against different determinants of microtubule-associated protein 2 (MAP2) enabled us to identify two distinct high-molecular-mass MAP2 species (270 and 250 kDa) and a substantial amount of MAP2c (70 kDa) in human neuroblastoma cells. The 250-kDa MAP2 species appears to be confined to the human neuroblastoma cells and was not observed in microtubules (MTs) from bovine and rat brain, mouse neuroblastoma, or MTs from human cerebellum. A new overlay method was developed, which demonstrates binding of tubulin to human neuroblastoma high-molecular-mass MAP2 by exposing nitrocellulose-bound MT proteins under polymerization conditions to tubulin. Bound tubulin was detected with a mAb directed against beta-tubulin. The binding of tubulin to MAP2 could be abolished by a peptide homologous to positions 426-445 of the C-terminal region of beta-tubulin. Immunological cross-reactivity with several mAbs directed against bovine brain MAP2, taxol-promoted coassembly into MTs, and immunocytochemical visualization within cells were further criteria utilized to characterize these proteins as true MAPs. Indirect immunofluorescence with anti-MAP2 and anti-beta-tubulin mAbs demonstrated that there is a change in the spatial organization of MTs during induced cell differentiation, as indicated by the appearance of MT bundles and the redistribution of MAP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号