首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three kinds of Ni and Al powder mixtures with nominal composition Ni75Al25 were employed to prepare Ni3Al alloys by spark plasma sintering(SPS) process. The raw powders include fine powder, coarse powder and mechanically-alloyed fine powder. The effects of powder characteristics and mechanical alloying on structure and properties of sintered body were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), bending test and Vickers hardness measurements. For all mixture powders near fully dense Ni3Al alloys (relative density〉99.5%) are obtained after sintering at 1150℃ for 5 min under 40 MPa. However a small fraction of Ni can be reserved for alloy from coarse powders. The results reveal that grain size is correlated with particle character of raw powder. Ni3Al alloy made from mechanically-alloyed fine powder has finer and more homogenous microstructure. The hardness of all alloys is similar varying from HV470 to 490. Ni3Al alloy made from mechanically-alloyed fine powder exhibites higher bending strength (1 070 MPa) than others.  相似文献   

2.
Small amounts of nanocrystalline Al2O3 particles were doped in WC-Co nanocrystalline powders to study their reinforcing effects, and spark plasma sintering technique was used to fabricate the WC-Co-Al2O3 nanocomposites. Experimental results show that the use of Al2O3 nanoparticles as dispersions to reinforce WC-Co composites can increase the hardness, especially the transverse rupture strength of the WC-Co hardmetal. With addition of 0.5%(mass fraction) Al2O3 nanoparticles, the spark plasma sintered WC-TCo-0. 5Al2O3 nanocomposites exhibit hardness of 21.22 GPa and transverse rupture strength of 3 548 MPa. The fracture surface of the WC-TCo-0.5Al2O3 nanocomposites mainly fracture with transcrystalline rupture mode. The reinforcing mechanism is maybe related to the hindrance effect of microcracks propagation and the pinning effect for the dislocations movement, as well as the residual compressive strength due to the Al2O3 nanoparticles doped.  相似文献   

3.
The mechanical alloying process of Ti-Al composite powders were carried out by use of high energy ball-milling machine. Structure variations of powder mixtures during mechanical alloying and characteristic of spark plasma sintering were investigated. The results show that during milling, TiAl, Ti3Al and Ti2Al phase intermetallic compounds are formed, simultaneously with powder refinement for the (TiH2-45Al-0.2Si-SNb) and (TiH2-45Al-0.2Si-7Nb) mixtures. The particle sizes of two powder mixtures are less than 300 nm after milling for 30 h. Sintering process of the milled powder can be completed in a short time by spark plasma sintering, and the sintering microstructure is composed of fine and homogeneous TiAl and Ti3Al phase.  相似文献   

4.
Fabrication technology and mechanical properties of the Fe3Al based alloys were studied by spark plasma sintering from elemental powders (Fe-30Al, volume fraction, %) and mechanically alloying powders. The mechanically alloying powders were processed by the high-energy ball milling the elemental mixture powders with the milling time of 5, 8 and 10 min, respectively. The spark plasma sintering process was performed under the pressure of 50 MPa at 1 050 ℃ for 5 min. The phase identification by X-ray diffraction presents the Fe reacts with Al completely during the processing time. The samples are nearly full density (e.g. the relative density of sinter of raw powder is 99%). The microstructure was observed by TEM. The mechanical properties were tested by three-point bending at room temperature in air. The results show that the mechanical properties are better (e.g. bend strength of 1 500 MPa ) than those of the ordinary Fe3Al casting.  相似文献   

5.
Sintering of WC-Co powder with nanocrystalline WC by spark plasma sintering   总被引:4,自引:0,他引:4  
A 92WC-8Co powder mixture with 33 nm WC grains was prepared by strengthening ball milling and was then sintered by spark plasma sintering (SPS) at 1000-1200℃ for 5-18 rain under 10-25 kN, respectively. Movement of the position of low punch shown shrinkage of the sintered body began above 800℃. The shrinkage slowly rose as the temperature rose from 800 to 1000℃ and then quickly rose at above 1000℃ and then gradually rose at above 1150℃. The densities of the samples increased with an increase in sintering temperature, rapidly below 1100℃, and then gradually above 1100℃. WC grains grow gradually with increasing sintering temperature. The powder was sintered to near full density at 1100℃ for 5 rain under 10 kN. The best result of the sample with 275 nm WC grains and no pores was obtained at 1150℃ under 10 kN for 5 rain. The research found the graphite die had a function of carburization, which could compensate the sintered body for the lack of carbon, and had the normal microstructure.  相似文献   

6.
Ti3SiC2 materials have been fabricated by spark plasma sintering of the elemental powders with the addition of Al.At the heating rate of 80℃/min and under the pressure of 30MPa,the ideal synthesis temperature of Ti3SiC2 is in the range of 1150-1250℃.The addition of Al is in favor of the formation of Ti3SiC2.The synthesized compound has the molecular of Ti3Si0.8Al0.2C2 and lattice parameters of α=0.3069nm,c=1.7670nm.Its grain is plane-shape with a size of about 50μm in the elongated dimension.The prepared material has Vickers hardness of 3.5-5.5GPa(at 1N and 15s) and is as readily machinable as graphite‘s.  相似文献   

7.
Spark plasma sintering (SPS) and conventional vacuum sintering (VS) were employed to fabricate ultrafine Ti(C,N)-based cermets. The shrinkage behavior, microstructure, and porosity and mechanical properties of the samples fabricated by SPS were compared with those of the samples sintered by VS using optical microscopy, scanning electron microscopy, universal testing machine, and rockwell tester. The results are as follows: (1) The shrinkage process occurred mainly in the range of 1000-1300℃ during the VS process, and only a 0.2% linear shrinkage ratio appeared below 800℃;during the SPS process, a 60% dimensional change occurred below 800℃ as a result of pressure action. (2) By utilizing the SPS technique, it is difficult for obtaining fully dense Ti(C,N)-based cermets. Due to the much existence of pores and uncombined carbon, the mechanical properties of the sintered samples by SPS are inferior to sintered ones by VS. (3) grain size of the samples sintered by SPS is still below 0.5μm, but not by VS; because of low sintering temperature, there are no typical core/rim structures formed in the sintered samples by SPS1; the main microstrures of the sintered samples by SPS2 are a white core/grey shell sstructure, whereas by VS show a typical black core.grey shell structure.  相似文献   

8.
Bi2Te3−xSex alloys are extensively used for thermoelectric cooling around room temperature, but, previous studies have reported peak thermoelectric efficiency of the material at higher temperature around 450 K. This study presents the casting followed by high energy ball milling and spark plasma sintering as a thriving methodology to produce efficient and well-built Bi2Te3−xSex material for the thermoelectric cooling around room temperature. In addition, changes in electrical and thermal transport properties brought up by amount of Se in the Bi2Te3−xSex material for this methodology are measured and discussed. Although Seebeck coefficient and electrical conductivity showed irregular trend, power factor, thermal conductivity and figure of merit ZT gradually decreased with the increase in amount of Se. A maximum ZT value of 0.875 at 323 K was obtained for x = 0.15 sample owing to its higher power factor. This value is 17% and 38% greater than for x = 0.3 and x = 0.6 samples respectively. At 323 K, herein reported ZT value of 0.875 is higher than the state of art n-type Bi2Te3 based thermoelectric materials produced by the time consuming and expensive methodologies.  相似文献   

9.
Cu?2Cr?1Nb alloy was fabricated by spark plasma sintering (SPS) using close coupled argon-atomized alloy powder as the raw material. The optimal SPS parameters obtained using the L9(34) orthogonal test were 950 °C, 50 MPa and 15 min, and the relative density of the as-sintered alloy was 99.8%. The rapid densification of SPS effectively inhibited the growth of the Cr2Nb phase, and the atomized powder microstructure was maintained in the grains of the alloy matrix. Uniformly distributed multi-scale Cr2Nb phases with grain sizes of 0.10?0.40 μm and 20?100 nm and fine grains of alloy matrix with an average size of 3.79 μm were obtained. After heat treatment at 500 °C for 2 h, the room temperature tensile strength, electrical conductivity, and thermal conductivity of the sintered Cu?2Cr?1Nb alloy were 332 MPa, 86.7% (IACS), and 323.1 W/(m·K), respectively, and the high temperature tensile strength (700 °C) was 76 MPa.  相似文献   

10.
The microstructure and thermoelectric properties of β-FeSi2 ceramics by hot pressing (HP) and spark plasma sintering (SPS) are investigated. With increasing hot-pressing temperature, the density, electronic conductivity and thermal conductivity of the samples increase significantly, the thermoelectric figure of merit is improved slightly. The microstructure study indicates that the sizes of the β-FeSi2 and ?-FeSi phases in the sample sintered by the SPS process are smaller than that by the HP process. The SPS sample shows excellent thermoelectric performance due to the low thermal conductivity.  相似文献   

11.
12.
By means of optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM), the process of densification, the characterization of phase transformation and the microstructure for spark plasma sintering (SPS) nano hard phase Ti(C, N)-based cermet were investigated. It is found that the spark plasma sintering (SPS) enables the nano hard phase Ti(C,N)-based cermet to densify rapidly, however, the full densification of the sintered samples can not be obtained. The rate of phase transformation is significantly quick.When being sintered at 1 200℃ for 8 min, Mo2C is completely dissolved, and TiN dissolves into TiC entirely and disappears. Above 1200℃, Ti(C,N) begins to decompose and the atoms of C and N separate from Ti(C,N) resul-ting in the generation of N2 and the graphite. Due to the denitrification and the graphitization, the density and the hardness of sintered samples are rather low. The distribution of grain size of the sample sintered at 1350℃ covers a wide range of 90-500 nm, and most of the grain size are about 200 nm. The hard phase is not of typical core-rim structure. Oxides on the surface of particles can not be fully removed and present in sample as titanium oxide TiO2.Graphite exists in band-like shape.  相似文献   

13.
电弧等离子体合成Sb2Te3粉末材料的微结构研究   总被引:1,自引:1,他引:0  
以单质sb、Te粉末为原材料,采用直流电弧等离子体蒸发法制备Sb<,2>Te<,3>纳米粉末,当Sb:Te的原子比为5.5:4.5时,合成了Sb<,2>Te<,3>纳米粉末.通过XRD、SEM和EDS分析法对Sb<,2>Te<,3>粉末的物相结构、形貌和化学成分进行了表征.结果表明,Sb<,2>Te<,3>粉末的晶格常数为a=4.267 A,c=30.469 A;Sb<,2>Te<,3>粉末的形貌大部分为六角形片状结构,说明其形貌为单一的Sb<,2>Te<,3>纳米粉末;Sb<,2>Te<,3>纳米粉末中Sb和Te的含量为41.3at%和58.7at%,与Sb<,2>Te<,3>的含量接近.  相似文献   

14.
采用石英管真空封装高纯度的Sb和Te粉末,在800℃熔炼12h,炉冷后研磨制备Sb2Te3粉末,真空热压烧结(480℃,20 MPa,保温1h),制备出Sb2Te3块体材料.用XRD、SEM和EDS对材料的物相、形貌和成分进行表征.XRD分析表明,真空熔炼合成粉末和热压烧结块体材料的XRD图谱峰与Sb2Te3的标准衍射图谱相对应.Sb2Te3热压块体材料在平行于热压方向的断面上分布有大量层片状结构,层片厚度均小于1μm,在层片状结构之间均匀分布着短的片状结构.与热压方向垂直的断面上也是层片状结构,层片状较短且分布较均匀,层片厚度大多在1μm左右.材料中Sb和Te的原子百分数分别为38.2%、61.8%,接近2∶3的原子百分比.  相似文献   

15.
The microstructure and properties of liquid-phase sintered 93W-4.9Ni-2.1Fe tungsten heavy alloys using ultra-fine tungsten powders (medium particle size of 700 nm) and original tungsten powders (medium particle size of 3um) were investigated respectively. Commercial tungsten powders (original tungsten powders) were mechanically milled in a high-energy attritor mill for 35 h. Ultra-fine tungsten powders and commercial Ni, Fe powders were consolidated into green compacts by using CIP method and liquid-phase sintering at 1465℃ for 30 rain in the dissociated ammonia atmosphere. Liquid-phase sintered tungsten heavy alloys using ultra-fine tungsten powders exhibit full densification (above 99% in relative density) and higher strength and elongation compared with conventional liquidphase sintered alloys using original tungsten powders due to lower sintering temperature at 1465℃ and short sintering time. The mechanical properties of sintered tungsten heavy alloy are found to be mainly dependent on the particles size of raw tungsten powders and liquid-phase sintering temperature.  相似文献   

16.
A novel Cu-based P/M aircraft brake material was prepared and the effects of sintering pressure and temperature on microstructure and tribological characteristic were investigated. For the constant sintering temperature, when the sintering pressure increases from 0.5 MPa to 1.5 MPa, the porosity, wear loss and friction coefficient decrease remarkably. When the sintering pressure increases from 1.5 MPa to 2.5 MPa, the porosity further decreases but in a little degree and wear behaviors are improved slightly. However, once the sintering pressure is larger than 2.5 MPa, it has no obvious effect on microstructure and tribological characteristic. For the constant sintering pressure, when the sintering temperature increases from 900 ℃ to 930 ℃, the sintered density remarkably-increases, and wear behaviors are obviously improved. For further increasing sintering temperature to l 000 ℃, the density keeps on increasing, but wear behaviors change slightly.  相似文献   

17.
The plasma sprayed thermal barrier coating (TBC) consists of NiCrAlY bond coating and yttria partially stabilized zirconia (YPSZ) top coating. NiCrAlY coating mainly contains Ni solid solution with face centered cubic lattice, Al2 O3 oxides and pores. The most obvious feature of YPSZ coating with tetragonal zirconia is a lot of vertical microcracks in this coating. The thermal insulation capability of the TBC increased with an increase in YPSZ coating thickness, the temperature drop across the TBC increasing from 60℃ to 92℃ with increasing YPSZ coating thickness from 100 μm to 500 μm. The thermalshock resistance of the TBC decreased with increasing YPSZ coating thickness and cracks initiated mainly in original vertical microcrack tips of the YPSZ coating and propagated not only along YPSZ coating / NiCrAlY coating interface but also through NiCrAlY coating. The oxidation process of the TBC at 1 200℃ can be divided into two stages: traasieat oxidation stage with rapid oxidation rate and steady oxidation stage with slow oxidation. Their transition time was about 10 hours. The weight gain for 100 hours was 3. 222 mg/mm^2. It is favorable to increase YPSZ coating toughness and to decrease the pores and oxides of the TBC system for improving thermal shock resistance and oxidation resistance of the TBC.  相似文献   

18.
Nanostructured skutterudite-related compound Fe0.25Ni0.25Co0.5Sb3 was synthesized by a solvothermal method using FeCl3, NiCl2, CoCl2, and SbCl3 as the precursors and NaBH4 as the reductant. The soivothermally synthesized powders consisted of free granules with an average particle size of tens of nanometers. The bulk material was prepared by hot pressing the powders. Transport property measurements indicated a heavily doped semiconductor behavior with n-type conduction. The thermal conductivity is about 1.83 W.m-1·K-1 at room temperature and decreases to 1.57 W.m-1·K-1 at 673 K. The low thermal conductivity is attributed to small grain size and high porosity. A maximum dimensionless figure of merit of 0.15 is obtained at 673 K.  相似文献   

19.
Nanostructured skutterudite-related compound Fe0.25Ni0.25Co0.5Sb3 was synthesized by a solvothermal method using FeCl3, NiCl2, CoCl2, and SbCl3 as the precursors and NaBH4 as the reductant. The solvothermally synthesized powders consisted of fine granules with an average particle size of tens of nanometers. The bulk material was prepared by hot pressing the powders. Transport property measurements indicated a heavily doped semiconductor behavior with n-type conduction. The thermal conductivity is about 1.83 W·m−1·K−1 at room temperature and decreases to 1.57 W·m−1·K−1 at 673 K. The low thermal conductivity is attributed to small grain size and high porosity. A maximum dimensionless figure of merit of 0.15 is obtained at 673 K.  相似文献   

20.
Alumina/zirconia composites were synthesized by wet-milling technique and rapid consolidation with high frequency induction heat sintering(HFIHS). The starting materials were a mixture of alumina micro-powder (80%, volume fraction) and 3YSZ nano-powders (20%). The mixtures were optimized for good sintering behaviors and mechanical properties. Nano-crystalline grains are obtained after 24 h milling. The nano-structured powder compacts are then processed to full density at different temperatures by HFIHS. Effects of temperature on the mechanical and microstructure properties were studied. Al2O3-3YSZ composites with higher mechanical properties and small grain size are successfully developed at relatively low temperatures through this technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号