首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unipolar resistive switching behaviors of the ZnO and Al2O3/ZnO films fabricated on flexible substrates by pulse laser deposition were studied in this paper. The films were deposited at room temperature without post-annealing treatment during the process. X-ray diffraction results indicated that ZnO film has a dominant peak at (002). Scanning electron microscopy observation showed a columnar grain structure of the ZnO film to the substrate. The bilayer device of Al2O3/ZnO films had stable resistive switching behaviors with a good endurance performance of more than 200 cycles, high resistive switching ratio of over 103 at a read voltage of 0.1 V, which is better than that of the single oxide layer device of ZnO film. A possible resistive switching filamentary mode was demonstrated in this paper. The conduction mechanisms of high and low resistance states can be explained by space charge limited conduction and Ohmics behaviors. The endurance of the bilayer (BL) device was not degraded upon bending cycles, which indicates the potential of the flexible resistive switching random access memory applications.  相似文献   

2.
采用聚乙烯咔唑作为活性层构建了ITO/PVK/Al的三明治结构阻变存储元件,并对其阻变特性进行了测量。结果表明其具有明显的非挥发型双稳态阻变特性, 具有WORM存储特性。该元件具有良好的数据保持能力和耐久能力,开关态电流比可达103,且具有较低的阈值转换电压。分别对低阻态和高阻态的载流子传输机制进行了拟合, 低阻态为欧姆传导机制,高阻态为空间电荷限制电流发射机制。根据载流子传输机制, 对阻变特性进行了解释。  相似文献   

3.
Crossbar‐type bipolar resistive memory devices based on low‐temperature amorphous TiO2 (a‐TiO2) thin films are very promising devices for flexible nonvolatile memory applications. However, stable bipolar resistive switching from amorphous TiO2 thin films has only been achieved for Al metal electrodes that can have severe problems like electromigration and breakdown in real applications and can be a limiting factor for novel applications like transparent electronics. Here, amorphous TiO2‐based resistive random access memory devices are presented that universally work for any configuration of metal electrodes via engineering the top and bottom interface domains. Both by inserting an ultrathin metal layer in the top interface region and by incorporating a thin blocking layer in the bottom interface, more enhanced resistance switching and superior endurance performance can be realized. Using high‐resolution transmission electron microscopy, point energy dispersive spectroscopy, and energy‐filtering transmission electron microscopy, it is demonstrated that the stable bipolar resistive switching in metal/a‐TiO2/metal RRAM devices is attributed to both interface domains: the top interface domain with mobile oxygen ions and the bottom interface domain for its protection against an electrical breakdown.  相似文献   

4.
In this paper, nonpolar resistive switching behavior is reported for the first time in a SZO-based memory device. The electrode materials used which have different conductivities affect the resistive switching properties of the device. The Al/V:SZO-LNO/Pt device shows nonpolar switching behavior, whereas the Al/V:SZO/LNO device has bipolar switching property. The resistance ratios of these two devices are quite distinct owing to the difference between the resistance of low resistance states. The Al/V:SZO-LNO/Pt device with lower resistive switching voltages (mnplus7 V turn on and mnplus2 V turn off) and higher resistance ratio is more suitable for practical applications compared to the Al/V:SZO/LNO device. The switching speed of the Al/V:SZO-LNO/Pt device is 10 ns, which is the fastest speed that has ever been reported. The conduction mechanisms, nondestructive readout property, retention time, and endurance of this device are also reported in this paper.  相似文献   

5.
Studies on a resistive switching memory based on a silver‐ion‐conductive solid polymer electrolyte (SPE) are reported. Simple Ag/SPE/Pt structures containing polyethylene oxide–silver perchlorate complexes exhibit bipolar resistive switching under bias voltage sweeping. The switching behavior depends strongly on the silver perchlorate concentration. From the results of thermal, transport, and electrochemical measurements, it is concluded that the observed switching originates from formation and dissolution of a silver metal filament inside the SPE film caused by electrochemical reactions. This is the first report of an electrochemical “atomic switch” realized using an organic material. The devices also show ON/OFF resistance ratios greater than 105, programming speeds higher than 1 μs, and retention times longer than 1 week. These results suggest that SPE‐based electrochemical devices might be suitable for flexible switch and memory applications.  相似文献   

6.
Nonvolatile resistive random‐access memory devices based on graphene‐oxide‐wrapped gold nanospheres (AuNS@GO) are fabricated following a one‐step room‐temperature solution‐process approach reported herein for the first time. The effect of the thickness of the GO layer (2, 5, and 7 nm) and the size of the synthesized AuNS (15 and 55 nm) are inspected. Reliable bistable switching is observed in the devices made from a flexible substrate and incorporating 5 and 7 nm thick GO‐wrapped AuNS, sandwiched between two metal electrodes. Current–voltage measurements show bipolar switching behavior with an ON/OFF ratio of 103 and relatively low operating voltage (?2.5 V). The aforementioned devices unveil remarkable robustness over 100 endurance cycles and a retention of 103 s. Conversely, a 2 nm thick GO layer is shown to be insufficient to allow current passage from the bottom to the top electrodes. The resistive switching mechanism is demonstrated by space charge trapped limited current due to the AuNS in AuNS@GO matrix. The proposed device and methodology herein applied are expected to be attractive candidates for future generation flexible memory devices.  相似文献   

7.
A novel multilevel resistive switching was observed in epoxy methacrylate resin (EMAR) and carbon nanotubes (CNTs) composite films fabricated by spin coating method. The fabricated devices demonstrated the rewritable nonvolatile memory characteristics. More significantly, the memory device based on EMAR+CNTs composite exhibits multilevel stable conductivity states with stable intermediate resistance states in response to the applied voltage. By setting different compliance current and content of CNTs in composite film, the multilevel ON-states and even the multilevel OFF-states have been observed in our memory device. As fabricated devices exhibited multilevel resistive switching with stable resistance ratio between different resistance states having good data retention and endurance characteristics. It offers a novel design strategy for solution processable multilevel data storage.  相似文献   

8.
In recent years, organic resistive memory devices in which active organic materials possess at least two stable resistance states have been extensively investigated for their promising memory potential. From the perspective of device fabrication, their advantages include simple device structures, low fabrication costs, and printability. Furthermore, their exceptional electrical performances such as a nondestructive reading process, nonvolatility, a high ON/OFF ratio, and a fast switching speed meet the requirements for viable memory technologies. Full understanding of the underlying physics behind the interesting phenomena is still challenging. However, many studies have provided useful insights into scientific and technical issues surrounding organic resistive memory. This Feature Article begins with a summary on general characteristics of the materials, device structures, and switching mechanisms used in organic resistive devices. Strategies for performance enhancement, integration, and advanced architectures in these devices are also presented, which may open a way toward practically applicable organic memory devices.  相似文献   

9.
Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite‐based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high‐quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament‐type switching behavior. This work elucidates the important role of processing‐dependent defects in the charge transport of hybrid perovskites and provides insights on the ion‐redistribution‐based RS in perovskite memory devices.  相似文献   

10.
Organic resistive memory devices are one of the promising next‐generation data storage technologies which can potentially enable low‐cost printable and flexible memory devices. Despite a substantial development of the field, the mechanism of the resistive switching phenomenon in organic resistive memory devices has not been clearly understood. Here, the time–dependent current behavior of unipolar organic resistive memory devices under a constant voltage stress to investigate the turn‐on process is studied. The turn‐on process is discovered to occur probabilistically through a series of abrupt increases in the current, each of which can be associated with new conducting paths formation. The measured turn‐on time values can be collectively described with the Weibull distribution which reveals the properties of the percolated conducting paths. Both the shape of the network and the current path formation rate are significantly affected by the stress voltage. A general probabilistic nature of the percolated conducting path formation during the turn‐on process is demonstrated among unipolar memory devices made of various materials. The results of this study are also highly relevant for practical operations of the resistive memory devices since the guidelines for time‐widths and magnitudes of voltage pulses required for writing and reading operation can be potentially set.  相似文献   

11.
In this work, pectin, a by-product has not been recycled sustainably, is introduced as an insulator to fabricate a novel organic resistive switching memory devices with Ag/Pectin/FTO structure for the first time. The device exhibits superior switching endurance accompanied by an OFF/ON resistance ratio (storage density window) of ∼450. This work reveals for the first time that pectin from fruit peel is a promising material for nonvolatile memory applications.  相似文献   

12.
In order to fulfill the information storage needs of modern societies, the performance of electronic nonvolatile memories (NVMs) should be continuously improved. In the past few years, resistive random access memories (RRAM) have raised as one of the most promising technologies for future information storage due to their excellent performance and easy fabrication. In this work, a novel strategy is presented to further extend the performance of RRAMs. By using only cheap and industry friendly materials (Ti, TiO2, SiOX, and n++Si), memory cells are developed that show both filamentary and distributed resistive switching simultaneously (i.e., in the same IV curve). The devices exhibit unprecedented hysteretic IV characteristics, high current on/off ratios up to ≈5 orders of magnitude, ultra low currents in high resistive state and low resistive state (100 pA and 125 nA at –0.1 V, respectively), sharp switching transitions, good cycle‐to‐cycle endurance (>1000 cycles), and low device‐to‐device variability. We are not aware of any other resistive switching memory exhibiting such characteristics, which may open the door for the development of advanced NVMs combining the advantages of filamentary and distributed resistive switching mechanisms.  相似文献   

13.
Fabrication of functional devices on arbitrary non‐conventional substrates has significant advantages for broadening devices applications and the development of soft electronic systems such as flexible, stretchable, wearable, and epidermal electronic modules. Information storage device is one of crucial electronic elements in modern digital circuitries. Herein, a re‐writable, transferable, and flexible sticker‐type organic memory on universal substrates is demonstrated through a facile and cost‐effective one‐step strategy. The organic memory sticker based on the graphene electrode grown by chemical vapor deposition consists of a blending composite of polymer (poly (methyl methacrylate) (PMMA):poly (3‐hexylthiophene) (P3HT) in chlorobenzene (CB) fabricated by mature solution processes and facilities. By combining with the mechanical elastic of organic material and graphene electrode, the sticker‐type organic memory can be easily tagged on non‐planar or flexible substrates after etching away the supporting metal. Particularly, the new attachable sticker‐type memory processes a unique feature of re‐programmable capability. It is believed that the universal substrate selectivity of the sticker‐type organic memory with re‐writable characteristic revealed here may greatly enlarge information storage devices in immense areas and advance the future functional soft circuitries.  相似文献   

14.
Memristive devices based on mixed ionic–electronic resistive switches have an enormous potential to replace today's transistor‐based memories and Von Neumann computing architectures thanks to their ability for nonvolatile information storage and neuromorphic computing. It still remains unclear however how ionic carriers are propagated in amorphous oxide films at high local electric fields. By using memristive model devices based on LaFeO3 with either amorphous or epitaxial nanostructures, we engineer the structural local bonding units and increase the oxygen‐ionic diffusion coefficient by one order of magnitude for the amorphous oxide, affecting the resistive switching operation. We show that only devices based on amorphous LaFeO3 films reveal memristive behavior due to their increased oxygen vacancy concentration. We achieved stable resistive switching with switching times down to microseconds and confirm that it is predominantly the oxygen‐ionic diffusion character and not electronic defect state changes that modulate the resistive switching device response. Ultimately, these results show that the local arrangement of structural bonding units in amorphous perovskite films at room temperature can be used to largely tune the oxygen vacancy (defect) kinetics for resistive switches (memristors) that are both theoretically challenging to predict and promising for future memory and neuromorphic computing applications.  相似文献   

15.
CsPbX3 (X = halide, Cl, Br, or I) all‐inorganic halide perovskites (IHPs) are regarded as promising functional materials because of their tunable optoelectronic characteristics and superior stability to organic–inorganic hybrid halide perovskites. Herein, nonvolatile resistive switching (RS) memory devices based on all‐inorganic CsPbI3 perovskite are reported. An air‐stable CsPbI3 perovskite film with a thickness of only 200 nm is successfully synthesized on a platinum‐coated silicon substrate using low temperature all‐solution process. The RS memory devices of Ag/polymethylmethacrylate (PMMA)/CsPbI3/Pt/Ti/SiO2/Si structure exhibit reproducible and reliable bipolar switching characteristics with an ultralow operating voltage (<+0.2 V), high on/off ratio (>106), reversible RS by pulse voltage operation (pulse duration < 1 ms), and multilevel data storage. The mechanical flexibility of the CsPbI3 perovskite RS memory device on a flexible substrate is also successfully confirmed. With analyzing the influence of phase transition in CsPbI3 on RS characteristics, a mechanism involving conducting filaments formed by metal cation migration is proposed to explain the RS behavior of the memory device. This study will contribute to the understanding of the intrinsic characteristics of IHPs for low‐voltage resistive switching and demonstrate the huge potential of them for use in low‐power consumption nonvolatile memory devices on next‐generation computing systems.  相似文献   

16.
Flexible multi‐colored electrochromic and volatile memory devices are fabricated from a solution‐processable electroactive aromatic polyimide with starburst triarylamine unit. The polyimide prepared by the chemical imidization was highly soluble in many organic solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures. The polyimide with strong electron‐donating capability possesses static random access memory behavior and longer retention time than other 6FDA‐based polyimides. The differences of the highest‐occupied and lowest unoccupied molecular orbital levels among these polyimides with different electron‐donating moieties are investigated and the effect on the memory behavior is demonstrated. The polymer film shows reversible electrochemical oxidation and electrochromism with high contrast ratio both in the visible range and near‐infrared region, which also exhibits high coloration efficiency, low switching time, and the outstanding stability for long‐term electrochromic operation. The highly stable electrochromism and interesting volatile memory performance are promising properties for the practical flexible electronics applications in the future.  相似文献   

17.
A detailed understanding of the conductance quantization and resistive switching phenomena in redox‐based memories is crucial for realizing atomic‐scale memory devices and for finding the adequate design principles on which they can be based. Here, the emergence of quantized conductance states and their correlation with resistive switching characteristics in polymer‐based atomic switches are investigated using combinations of current–voltage measurements and first‐principles density functional theory (DFT) simulations. Various conductance states, including integer and half‐integer multiples of a single atomic point contact and fractional conductance variations, are observed in an Ag/polyethylene oxide/Pt device under sweeping of bias voltage. Moreover, highly controllable and reproducible quantized conductance behaviors by tuning the voltage sweep rate and the sweep voltage range, suggesting well‐controlled formation of the atomic point contact, are demonstrated. The device also exhibits longer retention times for higher conductance states. The DFT simulations reveal the transmission eigenstate of geometrically optimized atomic point contact structures and the impact of the atomic configurations and structural stability on the conductance state, which also explains their resistive switching behaviors. The well‐defined, multiple quantized conductance states observed in these polymer‐based atomic switches show promise for the development of new multilevel memory devices.  相似文献   

18.
In this paper, the reproducible nonpolar resistive switching is demonstrated in devices with the sandwiched structure of Au/poly(3,4-ethylene-dioxythiophene): polystyrenesulfonate/Au for nonvolatile memory application. The switching between high resistance state (OFF-state) and low resistance state (ON-state) does not depend on the polarity of the applied voltage bias, which is different from both the WORM characteristics and the bipolar switching characteristics reported before. The resistive ratio between the ON- and OFF-state is on the order of 103 and increases with the device area decreasing. Both the ON- and OFF-state of the memory devices are stable, showing no significant degradation over 104 s under continuous readout testing. It is proposed that the reduction and oxidation of PEDOT: PSS film might be the switching mechanism.  相似文献   

19.
We propose all printed and highly stable organic resistive switching device (ORSD) based on graphene quantum dots (G-QDs) and polyvinylpyrrolidone (PVP) composite for non-volatile memory applications. It is fabricated by sandwiching G-QDs/PVP composite between top and bottom silver (Ag) electrodes on a flexible substrate polyethylene terephthalate (PET) at ambient conditions through a cost effective and eco-friendly electro-hydrodynamic (EHD) technique. Thickness of the active layer is measured around 97 nm. The proposed ORSD is fabricated in a 3 × 3 crossbar array. It operates switching between high resistance state (HRS) and low resistance state (LRS) with OFF/ON ratio ∼14 for more than 500 endurance cycles, and retention time for more than 30 days. The switching voltage for set/reset of the devices is ±1.8 V and the bendability down to 8 mm diameter for 1000 cycles are tested. The elemental composition and surface morphology are characterized by XPS, FE-SEM, and microscope.  相似文献   

20.
3D organic–inorganic and all‐inorganic lead halide perovskites have been intensively pursued for resistive switching memories in recent years. Unfortunately, instability and lead toxicity are two foremost challenges for their large‐scale commercial applications. Dimensional reduction and composition engineering are effective means to overcome these challenges. Herein, low‐dimensional inorganic lead‐free Cs3Bi2I9 and CsBi3I10 perovskite‐like films are exploited for resistive switching memory applications. Both devices demonstrate stable switching with ultrahigh on/off ratios (≈106), ultralow operation voltages (as low as 0.12 V), and self‐compliance characteristics. 0D Cs3Bi2I9‐based device shows better retention time and larger reset voltage than the 2D CsBi3I10‐based device. Multilevel resistive switching behavior is also observed by modulating the current compliance, contributing to the device tunability. The resistive switching mechanism is hinged on the formation and rupture of conductive filaments of halide vacancies in the perovskite films, which is correlated with the formation of AgIx layers at the electrode/perovskite interface. This study enriches the library of switching materials with all‐inorganic lead‐free halide perovskites and offers new insights on tuning the operation of solution‐processed memory devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号