首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Developing low‐cost non‐precious metal catalysts for high‐performance oxygen reduction reaction (ORR) is highly desirable. Here a facile, in situ template synthesis of a MnO‐containing mesoporous nitrogen‐doped carbon (m‐N‐C) nanocomposite and its high electrocatalytic activity for a four‐electron ORR in alkaline solution are reported. The synthesis of the MnO‐m‐N‐C nanocomposite involves one‐pot hydrothermal synthesis of Mn3O4@polyaniline core/shell nanoparticles from a mixture containing aniline, Mn(NO3)2, and KMnO4, followed by heat treatment to produce N‐doped ultrathin graphitic carbon coated MnO hybrids and partial acid leaching of MnO. The as‐prepared MnO‐m‐N‐C composite catalyst exhibits high electrocatalytic activity and dominant four‐electron oxygen reduction pathway in 0.1 M KOH aqueous solution due to the synergetic effect between MnO and m‐N‐C. The pristine MnO shows little electrocatalytic activity and m‐N‐C alone exhibits a dominant two‐electron process for ORR. The MnO‐m‐N‐C composite catalyst also exhibits superior stability and methanol tolerance to a commercial Pt/C catalyst, making the composite a promising cathode catalyst for alkaline methanol fuel cell applications. The synergetic effect between MnO and N‐doped carbon described provides a new route to design advanced catalysts for energy conversion.  相似文献   

3.
Heteroatom (N or S)‐doped graphene with high surface area is successfully synthesized via thermal reaction between graphene oxide and guest gases (NH3 or H2S) on the basis of ultrathin graphene oxide‐porous silica sheets at high temperatures. It is found that both N and S‐doping can occur at annealing temperatures from 500 to 1000 °C to form the different binding configurations at the edges or on the planes of the graphene, such as pyridinic‐N, pyrrolic‐N, and graphitic‐N for N‐doped graphene, thiophene‐like S, and oxidized S for S‐doped graphene. Moreover, the resulting N and S‐doped graphene sheets exhibit good electrocatalytic activity, long durability, and high selectivity when they are employed as metal‐free catalysts for oxygen reduction reactions. This approach may provide an efficient platform for the synthesis of a series of heteroatom‐doped graphenes for different applications.  相似文献   

4.
Nitrogen‐doped carbon materials are proposed as promising electrocatalysts for the carbon dioxide reduction reaction (CRR), which is essential for renewable energy conversion and environmental remediation. Unfortunately, the unclear cognition on the CRR active site (or sites) hinders further development of high‐performance electrocatalysts. Herein, a series of 3D nitrogen‐doped graphene nanoribbon networks (N‐GRW) with tunable nitrogen dopants are designed to unravel the site‐dependent CRR activity/selectivity. The N‐GRW catalyst exhibits superior CO2 electrochemical reduction activity, reaching a specific current of 15.4 A gcatalyst?1 with CO Faradaic efficiency of 87.6% at a mild overpotential of 0.49 V. Based on X‐ray photoelectron spectroscopy measurements, it is experimentally demonstrated that the pyridinic N site in N‐GRW serves as the active site for CRR. In addition, the Gibbs free energy calculated by density functional theory further illustrates the pyridinic N as a more favorable site for the CO2 adsorption, *COOH formation, and *CO removal in CO2 reduction.  相似文献   

5.
Here, pyridinic nitrogen dominated graphene aerogels with/without iron incorporation (Fe‐NG and NG) are prepared via a facile and effective process including freeze‐drying of chemically reduced graphene oxide with/without iron precursor and thermal treatment in NH3. A high doping level of nitrogen has been achieved (up to 12.2 at% for NG and 11.3 at% for Fe‐NG) with striking enrichment of pyridinic nitrogen (up to 90.4% of the total nitrogen content for NG, and 82.4% for Fe‐NG). It is found that the Fe‐NG catalysts display a more positive onset potential, higher current density, and better four‐electron selectivity for ORR than their counterpart without iron incorporation. The most active Fe‐NG exhibits outstanding ORR catalytic activity, high durability, and methanol tolerance ability that are comparable to or even superior to those of the commercial Pt/C catalyst at the same catalyst loading in alkaline environment. The excellent ORR performance can be ascribed to the synergistic effect of pyridinic N and Fe‐N x sites (where iron probably coordinates with pyridinic N) that serve as active centers for ORR. Our Fe‐NG can be developed into cost‐effective and durable catalysts as viable replacements of the expensive Pt‐based catalysts in practical fuel cell applications.  相似文献   

6.
Three kinds of Mn3O4 nanoparticles with different shapes (spheres, cubes, and ellipsoids) are selectively grown on nitrogen‐doped graphene sheets through a two‐step liquid‐phase procedure. These non‐precious hybrid materials display an excellent ORR activity and good durability. The mesoporous microstructure, nitrogen doping, and strong bonding between metal species and doped graphene are found to facilitate the ORR catalytic process. Among these three kinds of Mn3O4 particles, the ellipsoidal particles on nitrogen‐doped graphene exhibit the highest ORR activity with a more positive onset‐potential of –0.13 V (close to that of Pt/C, –0.09 V) and a higher kinetic limiting current density (JK) of 11.69 mA cm–2 at –0.60 V. It is found that the ORR performance of hybrid materials can be correlated to the shape of Mn3O4 nanocrystals, and specifically to the exposed crystalline facets associated with a given shape. The shape dependence of Mn3O4 nanoparticles integrated with nitrogen‐doped graphene on the ORR performance, reported here for the first time, may advance the development of fuel cells and metal‐air batteries.  相似文献   

7.
It is extremely desirable but challenging to create highly active, stable, and low‐cost catalysts towards oxygen reduction reaction to replace Pt‐based catalysts in order to perform the commercialization of fuel cells. Here, a novel iron nitride/nitrogen doped‐graphene aerogel hybrid, synthesized by a facile two‐step hydrothermal process, in which iron phthalocyanine is uniformly dispersed and anchored on graphene surface with the assist of π–π stacking and oxygen‐containing functional groups, is reported. As a result, there exist strong interactions between Fe x N nanoparticles and graphene substrates, leading to a synergistic effect towards oxygen reduction reaction. It is worth noting that the onset potential and current density of the hybrid are significantly better and the charge transfer resistance is much lower than that of pure nitrogen‐doped graphene aerogel, free Fe x N and their physical mixtures. The hybrid also exhibits comparable catalytic activity as commercial Pt/C at the same catalyst loading, while its stability and resistance to methanol crossover are superior. Interestingly, it is found that, apart from the active nature of the hybrid, the large surface area and porosity are responsible for its excellent onset potential and the high density of Fe–N–C sties and small size of Fe x N particles boost charge transfer rate.  相似文献   

8.
A highly active iron–nitrogen‐doped carbon nanotube catalyst for the oxygen reduction reaction (ORR) is produced by employing vertically aligned carbon nanotubes (VA‐CNT) with a high specific surface area and iron(II) phthalocyanine (FePc) molecules. Pyrolyzing the composite easily transforms the adsorbed FePc molecules into a large number of iron coordinated nitrogen functionalized nanographene (Fe–N–C) structures, which serve as ORR active sites on the individual VA‐CNT surfaces. The catalyst exhibits a high ORR activity, with onset and half‐wave potentials of 0.97 and 0.79 V, respectively, versus reversible hydrogen electrode, a high selectivity of above 3.92 electron transfer number, and a high electrochemical durability, with a 17 mV negative shift of E 1/2 after 10 000 cycles in an oxygen‐saturated 0.5 m H2SO4 solution. The catalyst demonstrates one of the highest ORR performances in previously reported any‐nanotube‐based catalysts in acid media. The excellent ORR performance can be attributed to the formation of a greater number of catalytically active Fe–N–C centers and their dense immobilization on individual tubes, in addition to more efficient mass transport due to the mesoporous nature of the VA‐CNTs.  相似文献   

9.
A novel hybrid electrocatalyst consisting of nitrogen‐doped graphene/cobalt‐embedded porous carbon polyhedron (N/Co‐doped PCP//NRGO) is prepared through simple pyrolysis of graphene oxide‐supported cobalt‐based zeolitic imidazolate‐frameworks. Remarkable features of the porous carbon structure, N/Co‐doping effect, introduction of NRGO, and good contact between N/Co‐doped PCP and NRGO result in a high catalytic efficiency. The hybrid shows excellent electrocatalytic activities and kinetics for oxygen reduction reaction in basic media, which compares favorably with those of the Pt/C catalyst, together with superior durability, a four‐electron pathway, and excellent methanol tolerance. The hybrid also exhibits superior performance for hydrogen evolution reaction, offering a low onset overpotential of 58 mV and a stable current density of 10 mA cm?2 at 229 mV in acid media, as well as good catalytic performance for oxygen evolution reaction (a small overpotential of 1.66 V for 10 mA cm?2 current density). The dual‐active‐site mechanism originating from synergic effects between N/Co‐doped PCP and NRGO is responsible for the excellent performance of the hybrid. This development offers an attractive catalyst material for large‐scale fuel cells and water splitting technologies.  相似文献   

10.
Currently, developing nonprecious‐metal catalysts to replace Pt‐based electrocatalysts in fuel cells has become a hot topic because the oxygen reduction reaction (ORR) in fuel cells often requires platinum, a precious metal, as a catalyst, which is one of the major hurdles for commercialization of the fuel cells. Recently, the newly emerging metal‐organic frameworks (MOFs) have been widely used as self‐sacrificed precursors/templates to fabricate heteroatom‐doped porous carbons. Here, the recent progress of MOF‐derived, heteroatom‐doped porous carbon catalysts for ORR in fuel cells is systematically reviewed, and the synthesis strategies for using different MOF precursors to prepare heteroatom‐doped porous carbon catalysts, including the direct carbonization of MOFs, MOF and heteroatom source mixture carbonization, and MOF‐based composite carbonization are summarized. The emphasis is placed on the precursor design of MOF‐derived metal‐free catalysts and transition‐metal‐doped carbon catalysts because the MOF precursors often determine the microstructures of the derived porous carbon catalysts. The discussion provides a useful strategy for in situ synthesis of heteroatom‐doped carbon ORR electrocatalysts by rationally designing MOF precursors. Due to the versatility of MOF structures, MOF‐derived porous carbons not only provide chances to develop highly efficient ORR electrocatalysts, but also broaden the family of nanoporous carbons for applications in supercapacitors and batteries.  相似文献   

11.
Engineering of controlled hybrid nanocomposites creates one of the most exciting applications in the fields of energy materials and environmental science. The rational design and in situ synthesis of hierarchical porous nanocomposite sheets of nitrogen‐doped graphene oxide (NGO) and nickel sulfide (Ni7S6) derived from a hybrid of a well‐known nickel‐based metal‐organic framework (NiMOF‐74) using thiourea as a sulfur source are reported here. The nanoporous NGO/MOF composite is prepared through a solvothermal process in which Ni(II) metal centers of the MOF structure are chelated with nitrogen and oxygen functional groups of NGO. NGO/Ni7S6 exhibits bifunctional activity, capable of catalyzing both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) with excellent stability in alkaline electrolytes, due to its high surface area, high pore volume, and tailored reaction interface enabling the availability of active nickel sites, mass transport, and gas release. Depending on the nitrogen doping level, the properties of graphene oxide can be tuned toward, e.g., enhanced stability of the composite compared to commonly used RuO2 under OER conditions. Hence, this work opens the door for the development of effective OER/HER electrocatalysts based on hierarchical porous graphene oxide composites with metal chalcogenides, which may replace expensive commercial catalysts such as RuO2 and IrO2.  相似文献   

12.
It is of increasing importance to explore new low‐cost and high‐activity electrocatalysts for oxygen reduction reaction (ORR), which have had a substantial impact across a diverse range of energy conversion system, including various fuel cell and metal–air batteries. Although engineering carbon nanostructures have been widely explored as a candidate class of Pt‐based ORR electrocatalysts owing to their proved high activity, outstanding stability, and ease of use, there still remains a daunting challenge to develop high activity metal‐free electrocatalysts in pH‐universal electrolyte system. Here, a reliable and controllable route amenable to prepare nitrogen‐doped porous carbon (NPC) with high yields and exceptional quality is described. The as‐prepared NPC shows advantages of high activity, high durability, and methanol‐tolerant as an efficient pH‐universal electrocatalyst for ORR, showing comparable or even better activity as compared with the commercial Pt/C catalysts not only in alkaline media but also in acidic and neutral electrolyte. Systematic electrochemical studies, combining with density functional theory calculation, demonstrate the unique nitrogen‐doping species and favorable pores in the as‐designed NPC synergistically contribute to the significantly improved catalytic activity in pH‐universal medium. The present work potentially presents an important breakthrough in developing ORR electrocatalysts for various fuel cells.  相似文献   

13.
14.
The rational construction of efficient bifunctional oxygen electrocatalysts is of immense significance yet challenging for rechargeable metal–air batteries. Herein, this work reports a metal–organic framework derived 2D nitrogen‐doped carbon nanotubes/graphene hybrid as the efficient bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries. The as‐obtained hybrid exhibits excellent catalytic activity and durability for the oxygen electrochemical reactions due to the synergistic effect by the hierarchical structure and heteroatom doping. The assembled rechargeable zinc–air battery achieves a high power density of 253 mW cm?2 and specific capacity of 801 mAh gZn?1 with excellent cycle stability of over 3000 h at 5 mA cm?2. Moreover, the flexible solid‐state rechargeable zinc–air batteries assembled by this hybrid oxygen electrocatalyst exhibits a high discharge power density of 223 mW cm?2, which can power 45 light‐emitting diodes and charge a cellphone. This work provides valuable insights in designing efficient bifunctional oxygen electrocatalysts for long‐life metal–air batteries and related energy conversion technologies.  相似文献   

15.
Single‐atom Pt and bimetallic Pt3Co are considered the most promising oxygen reduction reaction (ORR) catalysts, with a much lower price than pure Pt. The combination of single‐atom Pt and bimetallic Pt3Co in a highly active nanomaterial, however, is challenging and vulnerable to agglomeration under realistic reaction conditions, leading to a rapid fall in the ORR. Here, a sustainable quasi‐Pt‐allotrope catalyst, composed of hollow Pt3Co (H‐PtCo) alloy cores and N‐doped carbon anchoring single atom Pt shells (Pt1N‐C), is constructed. This unique nanoarchitecture enables the inner and exterior spaces to be easily accessible, exposing an extra‐high active surface area and active sites for the penetration of both aqueous and organic electrolytes. Moreover, the novel Pt1N‐C shells not only effectively protect the H‐PtCo cores from agglomeration but also increase the efficiency of the ORR in virtue of the isolated Pt atoms. Thus, the H‐PtCo@Pt1N‐C catalyst exhibits stable ORR without any fade over a prolonged 10 000 cycle test at 0.9 V in HClO4 solution. Furthermore, this material can offer efficient and stable ORR activities in various organic electrolytes, indicating its great potential for next‐generation lithium–air batteries as well.  相似文献   

16.
Metal organic framework (MOF)‐derived nitrogen‐enriched nanocarbons have been proposed as promising metal‐free electrocatalysts for oxygen reduction reaction. However, the characteristic microporous feature of MOF‐derived carbon determined by the MOF structure significantly hinders the mass transfer and exposure of active sites, resulting in unsatisfactory electrocatalytic performance. Here an in situ confinement pyrolysis strategy that can simply but efficiently transform monodisperse ZIF‐8 polyhedrons to nitrogen‐enriched meso‐microporous carbon (NEMC) frameworks is reported. Using this strategy, 3D NEMC frameworks, 1D NEMC fibers, and 2D NEMC on graphene (NEMC/G) can be successfully obtained. As a metal‐free elctrocatalyst, optimized NEMC/G can reach a comparable electrocatalytic activity with superior stability and methanol resistance to commercial 30 wt% Pt/C catalyst in 0.1 m KOH solution. Such enhanced performance can be ascribed to the stable and highly open network consisting of NEMC and G with fully exposed active sites, thereby leading to durable catalytic activity.  相似文献   

17.
18.
Hierarchically structured nitrogen‐doped carbon nanotube (NCNT) composites, with copper (Cu) nanoparticles embedded uniformly within the nanotube walls and cobalt oxide (CoxOy) nanoparticles decorated on the nanotube surfaces, are fabricated via a combinational process. This process involves the growth of Cu embedded CNTs by low‐ and high‐temperature chemical vapor deposition, post‐treatment with ammonia for nitrogen doping of these CNTs, precipitation‐assisted separation of NCNTs from cobalt nitrate aqueous solution, and finally thermal annealing for CoxOy decoration. Theoretical calculations show that interaction of Cu nanoparticles with CNT walls can effectively decrease the work function of CNT surfaces and improve adsorption of hydroxyl ions onto the CNT surfaces. Thus, the activities of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are significantly enhanced. Because of this benefit, further nitrogen doping, and synergistic coupling between CoxOy and NCNTs, Cu@NCNT/CoxOy composites exhibit ORR activity comparable to that of commercial Pt/C catalysts and high OER activity (outperforming that of IrO2 catalysts). More importantly, the composites display superior long‐term stability for both ORR and OER. This simple but general synthesis protocol can be extended to design and synthesis of other metal/metal oxide systems for fabrication of high‐performance carbon‐based electrocatalysts with multifunctional catalytic activities.  相似文献   

19.
Heteroatom‐doped carbon (HDC) has attracted tremendous attention due to its promising application in energy conversion and storage. Herein, due to its abundance high rate of reproduction, the microorganism, Bacillus subtilis, is selected as a precursor. An effective ionothermal process is adopted to produce the HDCs. Using acid activation, the obtained sample exhibits excellent electrocatalytic activity, long‐term stability, and excellent resistance to crossover effects in oxygen reduction. Additionally, the base‐treated sample exhibits superior performance in capacitors to most commercially available carbon materials. Even at a high current density, a relatively high capacitance is retained, indicating a great potential for direct application in energy storage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号