首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermally activated delayed fluorescence materials can effectively achieve high efficiency by harvesting singlet and triplet excitons in organic light‐emitting diodes (OLEDs). However, the choice of host material has a huge impact on the efficiency of the device, especially for the near‐infrared (NIR) luminescent material. In this contribution, a series of host materials are used to match the thermally activated delayed fluorescence emitter, 3,4‐bis(4‐(diphenylamino)phenyl)acenaphtho[1,2‐b]pyrazine‐8,9‐dicarbonitrile (APDC‐DTPA), for fabricating NIR OLEDs. All the host materials have the higher triplet energy than that of APDC‐DTPA. As the organometallic compound of Zn(BTZ)2 has relatively stronger dipole moment, the electroluminescence spectral peak of doped device shows strong bathochromic shift exceeding 700 nm and changes with doping concentration. Finally, the extremely high external quantum efficiency of 7.8% (with 10 wt% of doping concentration) and 5.1% (with 20 wt% of doping concentration) are achieved with the emission peaks of 710 and 728 nm, respectively, which are superior to that of the device based on the other host materials. The approach is feasible to achieve bathochromic shift and highly efficient fluorescent OLEDs.  相似文献   

2.
The development of near‐infrared (NIR) luminescent materials has emerged as a promising research field with important applications in solid‐state lighting (SSL), night‐vision‐readable displays, and the telecommunication industry. Over the past two decades, remarkable advances in the development of light‐emitting electrochemical cells (LECs) have stunned the SSL community, which has in turn driven the quest for new classes of stable, more efficient NIR emissive molecules. In this review, an overview of the state of the art in the field of near‐infrared light‐emitting electrochemical cells (NIR‐LEC) is provided based on three families of emissive compounds developed over the past 25 years: i) transition metal complexes, ii) ionic polymers, and iii) host–guest materials. In this context, ionic and conductive emitters are particularly attractive since their emission can be tuned via molecular design, which involves varying the chemical nature and substitution pattern of their ancillary ligands. Herein, the challenges and current limitations of the latter approach are highlighted, particularly with respect to developing NIR‐LECs with high external quantum efficiencies. Finally, useful guidelines for the discovery of new, efficient emitters for tailored NIR‐LEC applications are presented, together with an outlook towards the design of new NIR‐SSL materials.  相似文献   

3.
Many efforts have been dedicated to developing near infrared (NIR) fluorescent emitters with strong emission especially in the range of 700–1000 nm due to their potential applications in biomedical and optoelectronic fields. However, high solid state NIR emission fluorophores are still rare for applications. Herein, two efficient donor‐π‐acceptor type NIR emitters, C3HTP and C4HTP , are designed and synthesized by end‐capping two isomeric bis(n‐hexylthienyl)thiadiazole[3,4‐c]pyridines as π‐acceptor with structural bulky, electron rich tercarbazole moiety. They exhibit excellent solid state NIR emission with an emission peak at 725 nm, especially C3HTP , reaching a record high photoluminescence quantum yield (ΦPL) of 34% for NIR organic fluorescent materials. By taking advantage of their ΦPL values in the film state (ΦPL = 10–34%), suitable energy levels (highest occupied molecular orbital (HOMO) level ≈ ?5.3 eV), high hole mobility (5.49 × 10?8 cm2 V?1 s?1) as well as good amorphous film forming ability by solution casting, they are used to fabricate a nondoped emissive layer (EML) in simple double‐layer solution processed NIR electroluminescent (EL) devices. The device containing C3HTP as the EML shows a NIR emission peaking at 726 nm and excellent EL performance with a high external quantum efficiency of 1.51%, which is the best solution processed nondoped NIR organic light‐emitting diodes reported to date. Importantly, this represents an advance in near infrared organic fluorescent materials and EL devices that meet the requirements of many applications.  相似文献   

4.
The rapid development of the science and technology of organic semiconductors has already led to mass application of organic light‐emitting diodes (OLEDs) in television monitors of outstanding quality as well as in a large variety of smaller displays found in smartphones, tablets, and other gadgets, while introduction of the technology to the illumination sector is imminent. Notably, the requirements of all such applications for emission in the visible range of the electromagnetic spectrum are well tuned to the optical and electronic properties of typical organic semiconductors, thereby representing relatively “low‐hanging fruits,” in terms of material development and exploitation. However, the question arises as to whether developing materials suited for efficient near‐infrared (NIR, 700–1000 nm) emission is possible, and, crucially, desirable to enable new classes of applications spanning from through‐space, short‐range communications to biomedical sensors, night vision, and more generally security applications to name but a few. Here, the major fundamental hurdles to be overcome to achieve efficient NIR emission from organic π‐conjugated systems are discussed, recent progress is reviewed, and an outlook for further development of both materials and applications is provided.  相似文献   

5.
Significant effort has been made to develop novel material systems to improve the efficiency of near‐infrared organic light‐emitting diodes (NIR OLEDs). Of those, fluorescent chromophores are mostly studied because of their advantages in cost and tunability. However, it is still rare for fluorescent NIR emitters to present good color purities in the NIR range and to have high external quantum efficiency (EQE). Here, a wedge‐shaped D‐π‐A‐π‐D emitter APDC‐DTPA with thermally activated delayed fluorescence property and a small single‐triplet splitting (ΔEst) of 0.14 eV is presented. The non‐doped NIR device exhibits excellent performance with a maximum EQE of 2.19% and a peak wavelength of 777 nm. Remarkably, when 10 wt% of APDC‐DTPA is doped in 1,3,5‐tris(1‐phenyl‐1H‐benzimidazol‐2‐yl)benzene host, an extremely high EQE of 10.19% with an emission peak of 693 nm is achieved. All these values represent the best result for NIR OLEDs based on a pure organic fluorescent emitter with similar device structure and color gamut.  相似文献   

6.
Tremendous effort has been devoted to developing novel near‐infrared (NIR) emitters and to improving the performance of NIR organic light‐emitting diodes (OLEDs). Os(II) complexes are known to be an important class of NIR electroluminescent materials. However, the highest external quantum efficiency achieved so far for Os(II)‐based NIR OLEDs with an emission peak wavelength exceeding 700 nm is still lower than 3%. A new series of Os(II) complexes ( 1 – 4 ) based on functional pyrazinyl azolate chelates and dimethyl(phenyl)phosphane ancillaries is presented. The reduced metal‐to‐ligand charge transfer (MLCT) transition energy gap of pyrazinyl units in the excited states results in efficient NIR emission for this class of metal complexes. Consequently, NIR OLEDs based on 1 – 4 show excellent device performance, among which complex 4 with a triazolate fragment gives superior performance with maximum external quantum efficiency of 11.5% at peak wavelength of 710 nm, which represent the best Os(II)‐based NIR‐emitting OLEDs with peak maxima exceeding 700 nm.  相似文献   

7.
8.
Near‐infrared (NIR) light‐driven bilayer actuators capable of fast, highly efficient, and reversible bending/unbending motions toward periodic NIR light irradiation are fabricated by exploiting the photothermal conversion and humidity‐sensitive properties of polydopamine‐modified reduced graphene oxide (PDA‐RGO). The bilayer actuator comprises a PDA‐RGO layer prepared by a filtration method, and this layer is subsequently spin‐coated with a layer of UV‐cured Norland Optical Adhesive (NOA)‐63. Given the hydrophilicity of PDA, the PDA‐RGO layer can absorb water to swell and lose water to shrink. The intrinsic NIR absorbance of RGO sheets convertes NIR light into thermal energy, which transfers the humidity‐responsive PDA‐RGO layer to be NIR light‐responsive. Considering that the shape of the NOA‐63 layer remains unchanged under NIR light, periodic NIR light irradiation leads to asymmetric shrinkage/expansion of the bilayer, which enables fast and reversible bending/unbending motions of the bilayer actuator. We demonstrate that compared with a poly(ethylenimine)‐modified graphene oxide layer, the PDA‐RGO layer is unique in fabricating highly efficient bilayer actuators. A NIR light‐driven walking device capable of performing quick worm‐like motion on a ratchet substrate is built by connecting two polyethylene terephthalate plates as claws on opposite ends of the PDA‐RGO/NOA‐63 bilayer actuator.  相似文献   

9.
Organic single crystals have a great potential in the field of organic optoelectronics because of their advantages of high carrier mobility and high thermal stability. However, the application of the organic single crystals in light‐emitting devices (OLEDs) has been limited by single‐layered structure with unbalanced carrier injection and transport. Here, fabrication of a multilayered‐structure crystal‐based OLED constitutes a major step toward balanced carrier injection and transport by introducing an anodic buffer layer and electron transport layer into the device structure. Three primary color single‐crystal‐based OLEDs based on the multilayered structure and molecular doping exhibit a maximum luminance and current efficiency of 820 cd cm?2 and 0.9 cd A?1, respectively, which are the highest performance to date for organic single‐crystal‐based OLEDs. This work paves the way toward high‐performance organic optoelectronic devices based on the organic single crystals.  相似文献   

10.
Two triphenylamine‐based metal‐free organic sensitizers, D35 with a single anchor group and M14 with two anchor groups, have been applied in dye‐sensitized solar cells (DSCs) with a solid hole transporting material or liquid iodide/triiodide based electrolyte. Using the molecular hole conductor 2,2',7,7'‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)9,9'‐spirobifluorene (spiro‐OMeTAD), good overall conversion efficiencies of 4.5% for D35 and 4.4% for M14 were obtained under standard AM 1.5G illumination (100 mW cm?2). Although M14 has a higher molar extinction coefficient (by ~ 60%) and a slightly broader absorption spectrum compared to D35 , the latter performs slightly better due to longer lifetime of electrons in the TiO2, which can be attributed to differences in the molecular structure. In iodide/triiodide electrolyte‐based DSCs, D35 outperforms M14 to a much greater extent, due to a very large increase in electron lifetime. This can be explained by both the greater blocking capability of the D35 monolayer and the smaller degree of interaction of triiodide (iodine) with D35 compared to M14 . The present work gives some insight into how the molecular structure of sensitizer affects the performance in solid‐state and iodide/triiodide‐based DSCs.  相似文献   

11.
A group of dendrimers with oligo‐carbazole dendrons appended at 4,4′‐ positions of biphenyl core are synthesized for use as host materials for solution‐processible phosphorescent organic light‐emitting diodes (PHOLEDs). In comparison with the traditional small molecular host 4,4′‐N,N′‐dicarbazolebiphenyl (CBP), the dendritic conformation affords these materials extra merits including amorphous nature with extremely high glass transition temperatures (ca. 376 °C) and solution‐processibility, but inherent the identical triplet energies (2.60–2.62 eV). In comparison with the widely‐used polymeric host polyvinylcarbazole (PVK), these dendrimers possess much higher HOMO levels (–5.61 to –5.42 eV) that facilitate efficient hole injection and are favorable for high power efficiency in OLEDs. The agreeable properties and the solution‐processibility of these dendrimers makes it possible to fabricate highly efficient PHOLEDs by spin coating with the dendimers as phosphorescent hosts. The green PHOLED containing Ir(ppy)3 (Hppy = 2‐phenyl‐pyridine) dopant exhibits high peak efficiencies of 38.71 cd A?1 and 15.69 lm W?1, which far exceed those of the control device with the PVK host (27.70 cd A?1 and 9.6 lm W?1) and are among the best results for solution‐processed green PHOLEDs ever reported. The versatility of these dendrimer hosts can be spread to orange PHOLEDs and high efficiencies of 32.22 cd A?1 and 20.23 lm W?1 are obtained, among the best ever reported for solution‐processed orange PHOLEDs.  相似文献   

12.
Fluorescent emitters have regained intensive attention in organic light emitting diode (OLED) community owing to the breakthrough of the device efficiency and/or new emitting mechanism. This provides a good chance to develop new near‐infrared (NIR) fluorescent emitter and high‐efficiency device. In this work, a D‐π‐A‐π‐D type compound with naphthothiadiazole as acceptor, namely, 4,4′‐(naphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diyl)bis(N,N ‐diphenylaniline) (NZ2TPA), is designed and synthesized. The photophysical study and density functional theory analysis reveal that the emission of the compound has obvious hybridized local and charge‐transfer (HLCT) state feature. In addition, the compound shows aggregation‐induced emission (AIE) characteristic. Attributed to its HLCT mechanism and AIE characteristic, NZ2TPA acquires an unprecedentedly high photoluminescent quantum yield of 60% in the neat film, which is the highest among the reported organic small‐molecule NIR emitters and even exceeds most phosphorescent NIR materials. The nondoped devices based on NZ2TPA exhibit excellent performance, achieving a maximum external quantum efficiency (EQE) of 3.9% with the emission peak at 696 nm and a high luminance of 6330 cd m?2, which are among the highest in the reported nondoped NIR fluorescent OLEDs. Moreover, the device remains a high EQE of 2.8% at high brightness of 1000 cd m?2, with very low efficiency roll‐off.  相似文献   

13.
The simultaneous realization of high quantum yield and exciton utilizing efficiency (ηr) is still a formidable challenge in near‐infrared (NIR) fluorescent organic light‐emitting diodes (FOLEDs). Here, to achieve a high quantum yield, a novel NIR dye, 4,9‐bis(4‐(diphenylamino)phenyl)‐naphtho[2,3‐c ][1,2,5]selenadiazole, is designed and synthesized with a large highest occupied molecular orbital/lowest unoccupied molecular orbital overlap and an aggregation‐induced emission property, which demonstrates a high photoluminescence quantum yield of 27% at 743 nm in toluene and 29% at 723 nm in a blend film. For a high ηr, an orange‐emitting thermally activated delayed fluorescent material, 1,2‐bis(9,9‐dimethyl‐9,10‐dihydroacridine)‐4,5‐dicyanobenzene, is chosen as the sensitizing host to harvest triplet excitons in devices. The optimized devices achieve a good ηr of 45.7% and a high external quantum efficiency up to 2.65% at 730 nm, with a very small efficiency roll‐off of 2.41% at 200 mA cm?2, which are among the most efficient values for NIR‐FOLEDs over 700 nm. The effective utilization of triplet excitons via the thermally activated delayed fluorescence‐sensitizing host will pave a way to realize high‐efficiency NIR‐FOLEDs with small efficiency roll‐off.  相似文献   

14.
Organic semiconductor nanowires have inherent advantages, such as amenability to low‐cost, low‐temperature processing, and inherent four‐level energy systems, which will significantly contribute to the organic solid‐state lasers (OSSLs) and miniaturized laser devices. However, the realization of near‐infrared (NIR) organic nanowire lasers is always a big challenge due to the difficultly in fabrication of organic nanowires with diameters of ≈100 nm and material issues such as low photoluminescence quantum efficiency in the red‐NIR region. What is more, the achievement of wavelength‐tunable OSSLs has also encountered enormous challenge. This study first demonstrates the 720 nm NIR lasing with a low lasing threshold of ≈1.4 µJ cm?2 from the organic single‐crystalline nanowires, which are self‐assembled from small organic molecules of (E )‐3‐(4‐(dimethylamino)‐2‐methoxyphenyl)‐1‐(1‐hydroxynaphthalen‐2‐yl)prop‐2‐en‐1‐one through a facile solution‐phase growth method. Notably, these individual nanowires' Fabry–Pérot cavity can alternatively provide the red‐NIR lasing action at 660 or 720 nm from the 0–1 or 0–2 radiative transition channels, and the single (660 or 720 nm)/dual‐wavelength (660 and 720 nm) laser action can be achieved by modulating the length of these organic nanowires due to the intrinsic self‐absorption. These easily‐fabricated organic nanowires are natural laser sources, which offer considerable promise for coherent light devices integrated on the optics microchip.  相似文献   

15.
Near‐infrared (NIR) lighting plays an increasingly important role in new facial recognition technologies and eye‐tracking devices, where covert and nonvisible illumination is needed. In particular, mobile or wearable gadgets that employ these technologies require electronic lighting components with ultrathin and flexible form factors that are currently unfulfilled by conventional GaAs‐based diodes. Colloidal quantum dots (QDs) and emerging perovskite light‐emitting diodes (LEDs) may fill this gap, but generally employ restricted heavy metals such as cadmium or lead. Here, a new NIR‐emitting diode based on heavy‐metal‐free In(Zn)As–In(Zn)P–GaP–ZnS quantum dots is reported. The quantum dots are prepared with a giant shell structure, enabled by a continuous injection synthesis approach, and display intense photoluminescence at 850 nm with a high quantum efficiency of 75%. A postsynthetic ligand exchange to a shorter‐chain 1‐mercapto‐6‐hexanol (MCH) affords the QDs with processability in polar solvents as well as an enhanced charge‐transport performance in electronic devices. Using solution‐processing methods, an ITO/ZnO/PEIE/QD/Poly‐TPD/MoO3/Al electroluminescent device is fabricated and a high external quantum efficiency of 4.6% and a maximum radiance of 8.2 W sr?1 m?2 are achieved. This represents a significant leap in performance for NIR devices employing a colloidal III–V semiconductor QD system, and may find significant applications in emerging consumer electronic products.  相似文献   

16.
Near‐infrared‐emitting electroluminescent (EL) devices using blue‐light‐emitting polymers blended with the Yb complexes Yb(DBM)3phen (DBM = dibenzoylmethane), Yb(DNM)3phen (DNM = dinaphthoylmethane), and Yb(TPP)L(OEt) (L(OEt) = [(C5H5)Co{P(O)Et2}3]) have been studied. EL devices composed of Yb(DNM)3phen blended with PPP‐OR11 showed enhanced near‐IR output at 977 nm when compared to those fabricated with Yb(DBM)3phen/PPP‐OR11 blends. The maximum near‐IR external efficiencies of the devices with Yb(DBM)3phen and Yb(DNM)3phen are, respectively, 7 × 10–5 (at 6 V and at 0.81 mA mm–2) and 4 × 10–4 (at 7 V, and 0.74 mA mm–2). The optimal blend composition for EL device performance consisted of PPP‐OR11 blended with 10–20 mol‐% Yb(DNM)3phen. A device fabricated using Yb‐(TPP)L(OEt)/PPP‐OR11 showed significantly enhanced near‐IR output efficiency, and future efforts will focus on devices fabricated using porphyrin‐based materials.  相似文献   

17.
Organohalide perovskites have emerged as promising light‐sensing materials because of their superior optoelectronic properties and low‐cost processing methods. Recently, perovskite‐based photodetectors have successfully been demonstrated as both broadband and narrowband varieties. However, the photodetection bandwidth in perovskite‐based photodetectors has so far been limited to the near‐infrared regime owing to the relatively wide band gap of hybrid organohalide perovskites. In particular, short‐wavelength infrared photodiodes operating beyond 1 µm have not yet been realized with organohalide perovskites. In this study, narrow band gap organic dyes are combined with hybrid perovskites to form composite films as active photoresponsive layers. Tuning the dye loading allows for optimization of the spectral response characteristics and excellent charge‐carrier mobilities near 11 cm2 V?1 s?1, suggesting that these composites combine the light‐absorbing properties or IR dyes with the outstanding charge‐extraction characteristics of the perovskite. This study demonstrates the first perovskite photodiodes with deep near‐infrared and short‐wavelength infrared response that extends as far as 1.6 µm. All devices are solution‐processed and exhibit relatively high responsivity, low dark current, and fast response at room temperature, making this approach highly attractive for next‐generation light‐detection techniques.  相似文献   

18.
Highly efficient orange and green emission from single‐layered solid‐state light‐emitting electrochemical cells based on cationic transition‐metal complexes [Ir(ppy)2sb]PF6 and [Ir(dFppy)2sb]PF6 (where ppy is 2‐phenylpyridine, dFppy is 2‐(2,4‐difluorophenyl)pyridine, and sb is 4,5‐diaza‐9,9′‐spirobifluorene) is reported. Photoluminescence measurements show highly retained quantum yields for [Ir(ppy)2sb]PF6 and [Ir(dFppy)2 sb]PF6 in neat films (compared with quantum yields of these complexes dispersed in m‐bis(N‐carbazolyl)benzene films). The spiroconfigured sb ligands effectively enhance the steric hindrance of the complexes and reduce the self‐quenching effect. The devices that use single‐layered neat films of [Ir(ppy)2sb]PF6 and [Ir(dFppy)2sb]PF6 achieve high peak external quantum efficiencies and power efficiencies of 7.1 % and 22.6 lm W–1) at 2.5 V, and 7.1 % and 26.2 lm W–1 at 2.8 V, respectively. These efficiencies are among the highest reported for solid‐state light‐emitting electrochemical cells, and indicate that cationic transition‐metal complexes containing ligands with good steric hindrance are excellent candidates for highly efficient solid‐state electrochemical cells.  相似文献   

19.
High‐efficiency phosphorescent organic light‐emitting diodes (OLEDs) doped with Ir(ppy)2(acac) [bis(2‐phenylpyridine)iridium(III)‐acetylacetonate] in an exciplex forming co‐host have been optically analyzed. This emitter has a preferred orientation with the horizontal to vertical dipole ratio of 0.77:0.23 as compared to 0.67:0.33 in the isotropic case. Theoretical analysis based on the orientation factor (Θ, the ratio of the horizontal dipoles to total dipoles) and the photoluminescence quantum yield (qPL) of the emitter predicts that the maximum external quantum efficiency (EQE) of the OLEDs with this emitter is about 30%, which matches very well with the experimental data, indicating that the electrical loss of the OLEDs is negligible and the device structure can be utilized as a platform to demonstrate the validity of optical modeling. Based on the results, the maximum EQE achievable for a certain emitting dye in a host can be predicted by just measuring qPL and Θ in a neat film on glass without the need to fabricate devices, which offers a universal plot of the maximum EQE as a function of qPL and Θ.  相似文献   

20.
Organic light‐emitting diodes (OLEDs) can promise flexible, light weight, energy conservation, and many other advantages for next‐generation display and lighting applications. However, achieving efficient blue electroluminescence still remains a challenge. Though both phosphorescent and thermally activated delayed fluorescence materials can realize high‐efficiency via effective triplet utilization, they need to be doped into appropriate host materials and often suffer from certain degree of efficiency roll‐off. Therefore, developing efficient blue‐emitting materials suitable for nondoped device with little efficiency roll‐off is of great significance in terms of practical applications. Herein, a phenanthroimidazole?anthracene blue‐emitting material is reported that can attain high efficiency at high luminescence in nondoped OLEDs. The maximum external quantum efficiency (EQE) of nondoped device is 9.44% which is acquired at the luminescence of 1000 cd m?2. The EQE is still as high as 8.09% even the luminescence reaches 10 000 cd m?2. The maximum luminescence is ≈57 000 cd m?2. The electroluminescence (EL) spectrum shows an emission peak of 470 nm and the Commission International de L'Eclairage (CIE) coordinates is (0.14, 0.19) at the voltage of 7 V. To the best of the knowledge, this is among the best results of nondoped blue EL devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号