首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
镭同位素示踪隆教湾的海底地下水排泄   总被引:15,自引:0,他引:15  
福建省漳州市隆教湾海水中镭同位素的研究,目的是评价海底地下水排泄量。在2007年6月的航次中,垂直于岸线的9km剖面上布置15个站位,每个站位用潜水泵采集表层海水样60L于塑料桶中。水样运回实验室后,立即用装有锰纤维的PVC管以虹吸的方式富集水样中的镭同位素,水通过PVC管的流速小于300ml/min。224Ra活度用连续射气法测定,测完224Ra后密封7d以上,然后用直接射气法测定226Ra活度。224Ra和226Ra活度都呈现自岸向海逐渐降低的规律,表明扩散控制镭同位素的分布,由224Ra获得68.83km2d-1的扩散系数,同时226Ra形成-0.963dpm100l-1km-1的活度梯度。用扩散系数和活度梯度建立的226Ra的离岸通量为6.62×1011dpmkm-2d-1,这个通量一定是得到SGD输入的镭支持,从而获得隆教湾的海底地下水排泄量是3.03×109m3km-2d-1。该排泄量包括陆源地下淡水排泄量和再循环海水排泄量,绝大部分可能是再循环海水,有待进一步研究。  相似文献   

2.
Land-based pollutants such as fertilizers and wastewater can infiltrate into aquifers and discharge into surrounding coastal water bodies as submarine groundwater discharge (SGD). Oceanic islands, with a large coast length to land area ratio, may be hot spots of SGD into the global ocean. Although SGD may be a major pathway of dissolved nutrients, carbon and metals to coastal waters, studies have been limited due to the difficulties in measuring this often diffuse process. This study used radium isotopes (223Ra, 224Ra, 226Ra) to investigate SGD and the associated fluxes of nutrients into Tauranga Harbour, New Zealand. We calculated the apparent water mass ages of the harbour to be between ~4.1 and 7.8 days, which was similar to a previous numerical model of ~2–8 days. A 226Ra mass balance was constructed to quantify SGD fluxes at the harbour scale. A minimum SGD flux rate of 0.53 cm day?1 was calculated by using the maximum groundwater end-member value from 22 sample sites. However, using the geometric mean from these samples as a representative end-member, a final value of 2.83 cm day?1 or a flux of 3.09 × 106 m3 day?1 was calculated. These values were between ~1 and 2.8 times greater than all the major river and creeks discharging into the harbour during the sampling period. Due to the higher observed nutrient concentrations in groundwater, the SGD-derived dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and total dissolved phosphorus (TDP) fluxes were calculated to be 1.07, 0.87 and 0.05 mmol m2 day?1, respectively. These SGD inputs were ~5 times (for nitrogen) and ~8 times (for phosphorus) greater than the input from surrounding rivers and streams. The average N:P ratio in groundwater samples was 36:1 (which was greatly in excess of the Redfield ratio of 16). The harbour water had a N:P ratio of ~17:1. A positive relationship between radium isotopes and N:P ratios in the harbour further supported the hypothesis that SGD can have major implications for primary production, including recurrent algal bloom events which occur in the harbour. We suggest SGD as a major driver of nutrient dynamics in Tauranga Harbour and potentially other similar coastal lagoon systems and estuaries on oceanic islands.  相似文献   

3.
《Applied Geochemistry》1987,2(4):385-398
The source of Ra has been determined in water samples from four areas in Australia where anomalously high surface concentrations of226Ra have accumulated from groundwaters. All four anomalies were located adjacent to sandstone formations, and the groundwaters, which were generally all acidic and low in dissolved salts, appeared to be meteoric water with short ground-residence times. Uranium,226Ra and228Ra concentrations of waters feeding the anomalous areas were comparable to those found in standing waters within the sandstones. The226Ra/228Ra isotopic ratios were distributed about a median of 1.1 which suggests that the waters are in contact with rocks with near-normal U/Th ratios and, hence, that the Ra in the anomalies was derived from within the sandstones.The presence of the short-lived Ra isotopes,223Ra and224Ra, in high concentrations in most spring waters feeding these anomalies suggests that Ra enters groundwaters by recoil following alpha decay of a precursor parent radionuclide within mineral grains. Thus, although three of the areas were considered prospective for U, the radioactive anomalies studied appear to be due to natural transfer of Ra from the sandstones to the surface environment. In no case were the anomalies related to nearby known or undiscovered U deposits. Accordingly, a geochemical procedure, which includes Ra isotopic measurements, is recommended for evaluating radioactive anomalies for U exploration. This procedure should enable selection of only those anomalies with the highest potential for further exploration by more expensive techniques.  相似文献   

4.
Submarine groundwater discharge (SGD) is herein recognized as a significant pathway of material transport from land to the coastal SW Atlantic Ocean and thus, it can be a relevant factor affecting the marine biogeochemical cycles in the region. This paper focuses on the initial measurements of 226Ra, 228Ra and 222Rn made in Patagonia’s coastal zone of Chubut and Santa Cruz provinces (42°S–48°S, Argentina). 226Ra activity ranged from 2.9 to 73.5 dpm 100 L?1, and 228Ra activity ranged from 11.9 to 311.0 dpm 100 L?1 in groundwater wells. The radium activities found in Patagonia’s marine coastal regions and adjacent shelf indicate significant enrichment throughout the coastal waters. Groundwater samples presented the largest 222Rn activity and ranged from 2.66 to 1083 dpm L?1. Conversely, in the coastal marine environment, the 222Rn activity ranged from 1.03 to 6.23 dpm L?1. The Patagonian coastal aquifer showed a larger enrichment in 228Ra than in 226Ra, which is a typical feature for sites where SGD is dominant, probably playing a significant role in the biogeochemistry of these coastal waters.  相似文献   

5.
Water exchange between the coastal ocean and underlying aquifers provides a newly-recognized source of materials to the ocean. The flux of materials into the ocean from this process is termed submarine groundwater discharge (SGD). Both surficial and semi-confined aquifers contribute to SGD. Here we use 226Ra and 228Ra to quantify fluxes of SGD to Port Royal Sound, South Carolina, and to separate fluxes from the Upper Floridan (UFA) and surficial aquifers. Higher activity ratios of 228/226Ra in the surficial aquifer make this separation possible. We estimate total SGD fluxes of about 100 m3 s-1 with about 80% being derived from the surficial aquifer. The SGD flux provides about1.8 × 106 mol d-1 of NH4 with almost 90% from the surficial aquifer. Because of strong differences in the concentration of PO4 within the UFA, PO4 fluxes areless certain. Using the UFA wells with low PO4 concentrations yields a flux of 1.2 × 105 mol d-1; using wells with high concentrations yields a flux of 2.0 × 105 mol d-1. In the first case virtually all of the PO4 flux is from the surficial aquifer; in the second case, 40% is from the UFA.The UFA in this region has experienced dramatic changes as a result of withdrawals for human use. Prior to these withdrawals, total nutrient fluxes from the UFA may have been even larger. These changes in the UFA and similar coastal aquifers worldwide have the potential to significantly alter a major nutrient source for the coastal ocean.  相似文献   

6.
Factors controlling the groundwater transport of U, Th, Ra, and Rn   总被引:1,自引:0,他引:1  
A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the238U and232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, α-recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the238U and232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance ϰi, characteristic of each nuclide. Where ϰi is much longer than the aquifer length, (for238U,234U, and232Th), the activities grow linearly with distance. Where gKi is short compared to the aquifer length, (for234Th,230Th,228Th,228Ra, and224Ra), the activities rapidly reach a constant or quasi-constant activity value. For226Ra and222Rn, the limiting activity is reached after 1 km. High δ234U values (proportional to the ratioɛ234Th/W238U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios230Th/232Th,228Ra/226Ra and224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for228Ra/226Ra and224Ra/226Ra activity ratios less than unity. From the model, the highest222Rn emanation equals 2ɛ. This is in agreement with the hypothesis that222Rn activity can be used as a first approximation for input by recoil (Krishnaswamiet al 1982). However, high222Rn emanation cannot be explained by production from the surface layer as formulated in the model. Other possibilities involve models including surface precipitation, where the surface layer is not in steady-state.  相似文献   

7.
用镭同位素评价海水滞留时间及海底地下水排泄   总被引:3,自引:0,他引:3  
海底地下水排泄(submarine groundwater discharge, SGD)难以直接测量, 镭同位素和氡-222等天然示踪剂使得间接评价SGD通量成为可能.为了评价五缘湾的水体滞留时间和SGD通量, 实测了湾内海水、湾外海水和地下水中224Ra和226Ra的活度, 利用224Ra和226Ra半衰期的差异, 采用224Ra与226Ra的活度比值计算湾内水团的年龄和平均滞留时间, 利用224Ra和226Ra的质量平衡模型计算SGD通量.五缘湾13个站位的水团年龄在0.6~2.4 d之间, 湾顶水团年龄相对较大, 平均海水滞留时间1.4 d.地下水输入五缘湾的224Ra和226Ra通量分别为5.17×106 Bq/d和5.28×106 Bq/d, 将该通量用地下水端元的活度转换成为SGD通量分别是0.21 m3/m2/d(224Ra平衡模型)和0.23 m3/m2/d(226Ra平衡模型), 两种模型的结果较接近, 其平均值0.22 m3/m2/d可作为五缘湾的海底地下水排泄通量.   相似文献   

8.
Several recent studies have suggested that submarine groundwater discharge (SGD) occurs in the Venice lagoon with discharge rates on the same order or larger than the surface runoff, as demonstrated previously in several other coastal zones around the world. Here, the first set of 222Rn data, along with new 226Ra data are reported, in order to investigate the occurrence and magnitude of SGD specifically in the southern basin of the lagoon. The independent connection with the Adriatic Sea (at the Chioggia inlet), in addition to the relative isolation of the water body from the main lagoon, make this area an interesting case study. There is probably only minimal fresh groundwater flux to the lagoon because the surrounding aquifer is subsiding and mainly has a lower hydraulic head than seawater.The data show that the Ra and Rn activities are in slight excess in the lagoon compared to the open sea, with values on the same order as those observed in the northern and central basins. Taking into account the water exchange rate between the lagoon and adjacent seawater provided by previous hydrodynamic numerical modelling, it is shown that this excess cannot be supported at steady state by only riverine input and by diffusive release from the sediment interstitial water. High activities observed in groundwater samples collected from 16 piezometers tapping into the shallow aquifer over the coastal lowland substantiate that the excess radioactivity in the lagoon may indeed be due to the advection of groundwater directly into the lagoon bottom water through the sediment interface. However, the data show that the groundwater composition is extremely heterogeneous, with high Ra activities concentrated within a narrow coastal strip where the contact between fresh and saline water takes place, while Rn strongly decreases when approaching the lagoon shore across the 20 km coastal plain. Assuming that the average groundwater activities measured in the coastal strip are representative of the SGD composition, a SGD flux of 7.7 ± 3.5 × 105 and 2.5 ± 2 × 106 m3/d is calculated using a 226Ra and 222Rn budget, respectively, (i.e. about 1-3 times the surface runoff), substantially lower than in previous studies. The influence of all assumptions on SGD estimates (groundwater heterogeneity, diffusive sediment flux, one-box versus multi-boxes model calculations) is discussed, and a sensitivity analysis of the influence of imperfect exchange and mixing at the lagoon outlets that affects the lagoon composition is provided. Finally, the results confirm that the SGD flux, calculated with these assumptions, is largely (∼80%) composed of saline lagoon water circulating through the sediment under the lagoon margin, and that the fresh water discharge associated with SGD is at most a minor term in the lagoon hydrologic balance.  相似文献   

9.
Analyses have been made of many groundwater samples, some of which were collected from the vicinity of uranium deposits and others from unmineralized areas, for dissolved uranium and for the four naturally occurring isotopes of radium: 226Ra (238U decay series, y), 228Ra and 224Ra (232Th decay series, y and 3.8 d) and 223Ra (235U decay series, d). The radium isotopes 226Ra, 224Ra and 223Ra, are measured by alpha-spectrometry after extraction from a water sample soon after collection and 228Ra at a later time by determining the amount of ingrown 212Po.  相似文献   

10.
《Chemical Geology》2002,182(2-4):409-421
An improved method was developed to measure 226Ra, 228Ra and 224Ra in freshwaters by gamma spectrometry. Radium was selectively extracted from acidified samples using specific filters (3M EMPORE™ Radium Rad disks). The latter was subsequently analysed by gamma spectrometry. Simultaneous and direct determination of the activities of the three isotopes was performed by comparison of gamma rays of the Radium Rad disks with those of a calibrated standard disk. This efficient and reliable method allowed a reduction of sample processing to a few hours.This technique was applied to analyse the Ra isotope compositions of several CO2-rich hydrothermal springs of the western border of the Limagne graben (French Massif Central). The studied springs emerge from a succession of granitic outcrops lined up along a major fault. Their chemical compositions evolve from calcic and magnesian chloro-bicarbonated to sodic bicarbonated. All the springs display high Ra activities, probably linked to high CO2 content and/or high cation content of these waters, with various Ra isotope ratios. 226Ra activity ranges from 588 to 2287 mBq/l and 228Ra activity from 260 to 1590 mBq/l, whereas 224Ra displays an activity between 245 and 1808 mBq/l. Four of the six analysed springs have (228Ra/226Ra) activity ratios lower than 0.7, thus, significantly lower than the ratio expected from an interaction with a calc-alkaline granitoid (typically having (232Th/238U) activity ratio between 1 and 2). Low (228Ra/226Ra) ratio (0.27) of the northern water (Montpensier) suggests the existence in this area of a zone of U concentration, possibly resulting from U mobilization and accumulation induced by previous hydrothermal events. The (224Ra/228Ra) ratios display smaller variations. They suggest short transit times from the zone of Ra leaching to the surface (a few days) or a very shallow addition of 224Ra (e.g., from a localised zone where 228Th could be preferentially adsorbed on the mineral surfaces). In some cases, these ratios might be used to infer differences in transit times of waters between neighboring springs.  相似文献   

11.
Previous work has documented large fluxes of freshwater and nutrients from submarine groundwater discharge (SGD) into the coastal waters of a few volcanic oceanic islands. However, on the majority of such islands, including Moorea (French Polynesia), SGD has not been studied. In this study, we used radium (Ra) isotopes and salinity to investigate SGD and associated nutrient inputs at five coastal sites and Paopao Bay on the north shore of Moorea. Ra activities were highest in coastal groundwater, intermediate in coastal ocean surface water, and lowest in offshore surface water, indicating that high-Ra groundwater was discharging into the coastal ocean. On average, groundwater nitrate and nitrite (N + N), phosphate, ammonium, and silica concentrations were 12, 21, 29, and 33 times greater, respectively, than those in coastal ocean surface water, suggesting that groundwater discharge could be an important source of nutrients to the coastal ocean. Ra and salinity mass balances indicated that most or all SGD at these sites was saline and likely originated from a deeper, unsampled layer of Ra-enriched recirculated seawater. This high-salinity SGD may be less affected by terrestrial nutrient sources, such as fertilizer, sewage, and animal waste, compared to meteoric groundwater; however, nutrient-salinity trends indicate it may still have much higher concentrations of nitrate and phosphate than coastal receiving waters. Coastal ocean nutrient concentrations were virtually identical to those measured offshore, suggesting that nutrient subsidies from SGD are efficiently utilized.  相似文献   

12.
The “Water-Sediment Regulation Scheme” (WSRS) is critically important to the hydrologic evaluation of the Yellow River estuary since a huge pulse of water and sediment are delivered into the sea during a short period. We used the natural geochemical tracers radium (223Ra, 224Ra, 226Ra) and radon (222Rn) isotopes as well as other hydrological parameters to investigate the mixing variations and submarine groundwater discharge (SGD) in the Yellow River estuary under the influence of the 2013 WSRS. Dramatically elevated radium and radon isotopic activities were observed during this WSRS compared with activities measured during a non-WSRS period. Radium “water ages” indicated that the offshore transport rate nearly tripled when the river discharge increased from 400 to 3400 m3/s. We calculated the SGD flux in the Yellow River estuary based on a radium mass balance model as well as radium and radon time-series models. The SGD flux was estimated at 0.02~0.20 m/day during a non-WSRS period and 0.67~1.22 m/day during the 2013 WSRS period. The results also indicate that large river discharge tends to lead more intense SGD along the river channel direction with a large amount of fresh SGD.  相似文献   

13.
Groundwater may be highly enriched in dissolved carbon species, but its role as a source of carbon to coastal waters is still poorly constrained. Exports of deep and shallow groundwater-derived dissolved carbon species from a small subtropical estuary (Korogoro Creek, Australia, latitude ?31.0478°, longitude 153.0649°) were quantified using a radium isotope mass balance model (233Ra and 224Ra, natural groundwater tracers) under two hydrological conditions. In addition, air-water exchange of carbon dioxide and methane in the estuary was estimated. The highest carbon inputs to the estuary were from deep fresh groundwater in the wet season. Most of the dissolved carbon delivered by groundwater and exported from the estuary to the coastal ocean was in the form of dissolved inorganic carbon (DIC; 687 mmol m?2 estuary day?1; 20 mmol m?2 catchment day?1, respectively), with a large export of alkalinity (23 mmol m?2 catchment day?1). Average water to air flux of CO2 (869 mmol m?2 day?1) and CH4 (26 mmol m?2 day?1) were 5- and 43-fold higher, respectively, than the average global evasion in estuaries due to the large input of CO2- and CH4-enriched groundwater. The groundwater discharge contribution to carbon exports from the estuary for DIC, dissolved organic carbon (DOC), alkalinity, CO2, and CH4 was 22, 41, 3, 75, and 100 %, respectively. The results show that CO2 and CH4 evasion rates from small subtropical estuaries surrounded by wetlands can be extremely high and that groundwater discharge had a major role in carbon export and evasion from the estuary and therefore should be accounted for in coastal carbon budgets.  相似文献   

14.
The geochemical behaviors of Be and Al in ocean waters have been successfully studied in recent years using natural, cosmogenic, radioactive10Be and26Al as tracers. The present day dissolved concentrations and distribution of the stable and radioactive isotopes of Be and Al in ocean waters have revealed their short residence times and appreciable effects of exchange fluxes at the coastal and ocean-sediment interfaces. It follows that concentrations of these particle-active elements must have varied in the past with temporal changes in climate, biological productivity and aeolian flux of continental detritus to the oceans. We therefore investigated the feasibility of extending the measurements of Be and Al isotope concentrations in marine systems to the 103–106 y BP time scale. We report here the discovery of significant amounts of intrinsic Be and Al in marine foraminiferal calcite and coral aragonite, and of Al in opal (radiolarians) and aragonite (coral), which makes it possible to determine10Be/Be and26Al/Al in oceans in the past. We also report measured10Be/9Be in foraminiferal calcite in Pacific Ocean cores, which reveal that the concentrations and ratios of the stable and cosmogenic isotopes of Be and Al have varied significantly in the past 30 ky. The implications of these results are discussed.  相似文献   

15.
Naturally-occurring radionuclides (uranium, radium, and radon), major dissolved constituents, and trace elements were investigated in fresh groundwater in 117 wells in fractured crystalline rocks from the Piedmont region (North Carolina, USA). Chemical variations show a general transition between two water types: (1) slightly acidic (pH 5.0–6.0), oxic, low-total dissolved solids (TDS) waters, and (2) near neutral, oxic to anoxic, higher-TDS waters. The uranium, radium, and radon levels in groundwater associated with granite (Rolesville Granite) are systematically higher than other rock types (gneiss, metasedimentary, and metavolcanic rocks). Water chemistry plays a secondary role on radium and radon distributions as the 222Rn/226Ra activity ratio is correlated with redox-sensitive solutes such as dissolved oxygen and Mn concentrations, as well as overall dissolved solids content including major divalent cations and Ba. Since 224Ra/228Ra activity ratios in groundwater are close to 1, we suggest that mobilization of Ra and Rn is controlled by alpha recoil processes from parent nuclides on fracture surfaces, ruling out Ra sources from mineral dissolution or significant long-distance Ra transport. Alpha recoil is balanced by Ra adsorption that is influenced by redox conditions and/or ion concentrations, resulting in an approximately one order of magnitude decrease (~ 20,000 to ~ 2000) in the apparent Ra distribution coefficient between oxygen-saturated and anoxic conditions and also across the range of dissolved ion concentrations (up to ~ 7 mM). Thus, the U and Th content of rocks is the primary control on observed Ra and Rn activities in groundwater in fractured crystalline rocks, and in addition, linked dissolved solids concentrations and redox conditions impart a secondary control.  相似文献   

16.
226Ra, 228Ra and Ba distributions as well as 228Ra/226Ra and 226Ra/Ba ratios were measured in seawater, suspended and sinking particles at the DYFAMED station in the Western Mediterranean Sea at different seasons of year 2003 in order to track the build-up and fate of barite through time. The study of the 228Raex/226Raex ratios (Raex = Ra activities corrected for the lithogenic Ra) of suspended particles suggests that Baex (Baex = Ba concentrations corrected for the lithogenic Ba, mostly barite) formation takes place not only in the upper 500 m of the water column but also deeper (i.e. throughout the mesopelagic layer). Temporal changes in the 228Raex/226Raex ratios of sinking particles collected at 1000 m depth likely reflect changes in the relative proportion of barite originating from the upper water column (with a high 228Ra/226Ra ratio) and formed in the mesopelagic layer (with a low 228Ra/226Ra ratio). 228Raex/226Raex ratios measured in sinking particles collected in the 1000 m-trap in April and May suggest that barite predominantly formed in the upper water column during that period, while barite found outside the phytoplankton bloom period (February and June) appears to form deeper in the water column. Combining ratios of both the suspended and sinking particles provides information on aggregation/disaggregation processes. High 226Raex/Baex ratios were also found in suspended particles collected in the upper 500 m of the water column. Because celestite is expected to be enriched in Ra [Bernstein R. E., Byrne R. H. and Schijf J. (1998) Acantharians: a missing link in the oceanic biogeochemistry of barium. Deep-Sea Res. II45, 491-505], acantharian skeletons may contribute to these high ratios in shallow waters. The formation of both acantharian skeletons and barite enriched in 226Ra may thus contribute to the decrease in the dissolved 226Ra activity and 226Ra/Ba ratios of surface waters observed between February and June 2003 at the DYFAMED station.  相似文献   

17.
Water quality monitoring in Hanalei Bay, Kaua`i (Hawai`i, USA) has documented intermittent high concentrations of nutrients (nitrate, phosphate, silica, and ammonium) and fecal indicator bacteria (FIB, i.e., enterococci and Escherichia coli) in nearshore waters and spurred concern that contaminated groundwater might be discharging into the bay. The present study sought to identify and track sources of nutrients and FIB to four beaches in Hanalei Bay and one beach outside the bay, together representing a wide range of land uses. 223Ra and 224Ra activity, salinity, nutrient and FIB concentrations were measured in samples from the coastal aquifer, the nearshore ocean, springs, the Hanalei River, and smaller streams. In addition, FIB concentrations in beach sands were measured at each site, and the enterococcal surface protein (esp) gene assay was used to investigate whether the observed FIB originated from a human source. Nutrient concentrations in groundwater were significantly higher than in nearshore water, inversely correlated to salinity, and highly site specific, indicating local controls on groundwater quality. Fluxes of groundwater into Hanalei Bay were calculated using a mass-balance approach and represented at least 2–10% of river discharges. However, submarine groundwater discharge (SGD) may provide 2.7 times as much nitrate + nitrite to Hanalei Bay as does the Hanalei River. It may also provide significant fluxes of phosphate and ammonium, comprising 15% and 20% of Hanalei River inputs, respectively. SGD-derived silica inputs to the bay comprised less than 3% of Hanalei River inputs. FIB concentrations in groundwater were typically lower than those in nearshore water, suggesting that significant FIB inputs from SGD are unlikely. Positive esp gene assays suggested that some enterococci in environmental samples were of human fecal origin. Identifying how nutrients and FIB enter nearshore waters will help environmental managers address pressing water quality issues, including exceedances of the state Enterococcus water quality standard and nutrient loading to coral reefs.  相似文献   

18.
Measurements were made of the 226Ra/223Ra activity ratio in ground waters obtained from drill holes in the vicinity of uranium mineralization in northern Saskatchewan where certain hydrologic parameters, specifically ground-water velocity and direction, had been determined. The results show that it is possible to approximate the distance from a ground-water sampling point to the area of mineralization owing to differences in the half lives of the two radium nuclides.The theoretical basis for the determination of the distances is explained.  相似文献   

19.
226Ra and other uranium-series radionuclides have been measured in a suite of marine phosphorite samples from the upwelling area off Peru/Chile by gamma-ray spectrometry and radiochemical techniques. Our results lead to the following conclusions: (1) phosphorite nodules typically show unidirectional growth at rates of 1 to 10 mm/Kyr; (2) very young samples (less than a few thousand years) contain slight excess amounts of 226Ra probably derived from pore fluids; and (3) slow but persistent leakage of 226Ra out of phosphate nodules occurs resulting in systematically lower 226Ra ages compared to 230Th ages for samples older than about twenty thousand years. Radium fluxes from these phosphate nodules appear to be 1 to 3 orders of magnitude less than those calculated for deep-sea sediments and ferromanganese nodules.  相似文献   

20.
A decade of studies of metal and nutrient inputs to the back-barrier area of Spiekeroog Island, NW German Wadden Sea, have concluded that pore water discharge provides a significant source of the enrichments of many components measured in the tidal channels during low tide. In this paper we add studies of radium isotopes to help quantify fluxes into and out of this system. Activities of radium isotopes in surface water from tidal channels in the back-barrier area exhibit pronounced changes in concert with the tide, with highest activities occurring near low tide. Other dissolved components: silica, total alkalinity (TA), manganese, and dissolved organic carbon (DOC) exhibit similar changes, with patterns matching the Ra isotopes. Uranium follows a reverse pattern with highest concentrations at high tide. Here we use radium isotope measurements in water column and pore water samples to estimate the fluxes of pore waters that enter the tidal channels during low tide. Using a flushing time of 4 days and the average activities of 224Ra, 223Ra, and 228Ra measured in the back-barrier surface and pore waters, we construct a balance of these isotopes, which is sustained by a deep pore water flux of (2-4) × 108 L per tidal cycle. This flux transports Ra and the other enriched components to the tidal channels and causes the observed low tide enrichments. An independent estimate of pore water recharge is based on the depletion of U in the tidal channels. The U-based recharge is about two times greater than the Ra-based discharge; however, other sinks of U could reduce the recharge estimate. The pore waters have wide ranges of enrichment in silica, alkalinity, manganese, DOC, and depletion of U with depth. We estimate concentrations of these components in pore water from the depth expected to contribute the majority of the pore water flux, 3.5 m, to determine fluxes of these components to the tidal channels. Samples from this depth have minimum concentrations of silica, alkalinity, manganese, and DOC. We also estimate the exports of these components (and import of U) due to mixing based on average measured concentrations in the tidal creeks and the 4-day flushing time. A comparison of these estimates reveals that the exports (negative in the case of U) equal or exceed the pore water fluxes. By using values slightly higher than the minimum concentrations at 3.5 m to calculate inputs, the two estimates could be forced to match. We conclude that pore water drainage is the major factor regulating fluxes of Ra isotopes, silica, alkalinity, manganese, DOC, and uranium in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号