首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 421 毫秒
1.
以炭黑为碳源,采用喷雾干燥一碳热还原法(SDCTM)制备了多孔隙球形LiFePO4/C正极材料。研究了不同炭黑加入量对LiFePO4/C结晶性能、颗粒形貌、放电比容量和循环稳定性等性能的影响。结果表明:炭黑含量的增加有利于优化一次颗粒形貌,促进LiFePO4的结晶,提高其放电比容量、首次放电效率及容量保持率等电化学性能。当炭黑加入量X=2.5时,球形LiFePO4/C正极材料粒径在10μm左右,其一次颗粒粒径平均在200n/n左右,比表面积达4.15m2/g,碳含量12.0%wt。在室温下,0.1C充放电下,放电比容量为131.7mAh/g,首次放电效率为90.8%,30次循环后容量保持率为96.2%。在4C充放电下,仍有65.7mAh/g的可逆比容量,且显示了良好的充放电性能。  相似文献   

2.
分别以蔗糖、酚醛树脂、聚丙烯作为碳源,采用高温固相法制备了橄榄石型锂离子电池正极LiFePO4/C复合材料,并考察不同碳源对合成的LiFePO4/C复合材料电化学性能的影响。采用XRD、SEM、拉曼光谱分析、恒电流充放电测试和交流阻抗分析等方法对材料的结构、表面形貌及电化学性能进行了研究。结果表明,以聚丙烯为碳源合成的LiFePO4/C材料具有最佳的电化学性能。0.1C的放电比容量为154.9mAh/g,在2C下的放电比容量达131.3mAh/g,循环30次后容量为130.1mAh/g。  相似文献   

3.
动力型铅酸及LiFePO_4锂离子电池的容量特性   总被引:1,自引:1,他引:0  
对12 V/55 Ah(C/20)动力型阀控铅酸(VRLA)电池和3.2 V/11 Ah动力型LiFePO4锂离子电池进行了容量实验,探讨了它们的容量特性和放电电流、放电起始电压、放电温升和环境温度的关系.LiFePO4锂离子电池的容量在2 C电流下仅有约10%的衰减,而VRLA电池的衰减在1.5 C时有近50%.  相似文献   

4.
LiFePO_4锂离子电池的低温性能   总被引:2,自引:1,他引:1  
采用循环伏安和充放电测试研究了LiFePO4和碳负极材料的低温性能.LiFePO4在25℃时的0.1 C和0.3 C放电比容量分别为156 mAh/g和148 mAh/g,在-20℃时分别为91 mAh/g和65 mAh/g.碳负极材料在-20℃下以0.1 C和0.3 C放电,几乎可放出25℃时的全部比容量.约330 mAh/g.LiFePO4是LiFePO4锂离子电池低温容量的主要影响因素.  相似文献   

5.
张胜利  王亚萍  宋延华 《电池》2012,42(2):94-95
以水性粘结剂LA135为正极粘结剂、LiFePO4为活性物质,测试不同粘结剂含量的锂离子电池的性能.当粘结剂的含量为6%时,在2.75~4.20 V充放电,0.20 C首次、第10次循环的放电比容量分别为140.6 mAh/g和140.3 mAh/g,容量保持率为99.8%;1.00 C首次、第10次循环的放电比容量分别为103.3 mAh/g和99.1 mAh/g,容量保持率为95.9%.  相似文献   

6.
溶胶-凝胶法合成正极材料LiFePO4   总被引:4,自引:1,他引:3  
以Fe3 盐为铁源,采用溶胶-凝胶法制备了锂离子电池正极材料LiFePO4,用XRD、SEM、恒流充放电和交流阻抗方法研究了样品的结构、形貌和电化学性能。样品0.1C首次放电容量达到131 mAh/g,经10次循环后,容量保持率为96%。采用溶胶-凝胶法合成的LiFePO4,抑制了循环过程中电化学反应阻抗的增加。  相似文献   

7.
LiFePO4掺镍的改性研究   总被引:1,自引:0,他引:1  
采用固相反应法制备了锂离子电池正极材料LiFe1-xNixPO4(x=0、0.05、0.10、0.20、0.30、0.40和0.50).Ni替代部分Fe,改变了LiFePO4的晶胞参数,获得了完全连续固溶的LiFe1-xNixPO4,掺杂后,样品的粒径变小.在低放电倍率(0.1 C)时,LiFeo.90Ni0.10PO4的首次放电容量最大,为140 mAh/g,较LiFePO4增加了12%;放电倍率为0.5 C时,其容量为114 mAh/g,较LiFePO4增加了32%.少量Ni掺杂可提高LiFePO4的放电容量,改善高倍率充放电性能.  相似文献   

8.
LiFePO4掺镍的改性研究   总被引:11,自引:4,他引:7  
采用固相反应法制备了锂离子电池正极材料LiFe1-xNixPO4(x=0、0.05、0.10、0.20、0.30、0.40和0.50).Ni替代部分Fe,改变了LiFePO4的晶胞参数,获得了完全连续固溶的LiFe1-xNixPO4,掺杂后,样品的粒径变小.在低放电倍率(0.1 C)时,LiFeo.90Ni0.10PO4的首次放电容量最大,为140 mAh/g,较LiFePO4增加了12%;放电倍率为0.5 C时,其容量为114 mAh/g,较LiFePO4增加了32%.少量Ni掺杂可提高LiFePO4的放电容量,改善高倍率充放电性能.  相似文献   

9.
分别以草酸锂、草酸亚铁、磷酸二氢铵为锂源、铁源和磷源,苯蒽二元共聚物为还原剂合成前驱体,采用微波合成的方法制备了锂离子电池正极材料LiFePO4。采用扫描电镜(SEM)对产物进行物相表征,并采用恒流充放电的方法考察了样品作为锂离子电池正极材料的电化学性能。结果表明,650℃下制备的样品为纯橄榄石结构的LiFePO4,颗粒粒度为1~2μm;在2.5~4.2V电压范围内以0.2C倍率充放电时,首次放电比容量达到158.3mAh/g,经过20次充放电循环容量仍保持为157.9mAh/g,具有较好的倍率放电性能和容量保持能力。  相似文献   

10.
张海峰  孙哲  陈明军 《电源技术》2012,36(12):1787-1789
分别以草酸锂、草酸亚铁、磷酸二氢铵为锂源、铁源和磷源,苯蒽二元共聚物为还原剂合成前驱体,采用微波合成的方法制备了锂离子电池正极材料LiFePO4。采用扫描电镜(SEM)对产物进行物相表征,并采用恒流充放电的方法考察了样品作为锂离子电池正极材料的电化学性能。结果表明,650℃下制备的样品为纯橄榄石结构的LiFePO4,颗粒粒度为1~2μm;在2.5~4.2 V电压范围内以0.2 C充放电时,首次放电比容量达到158.3 mAh/g,经过20次充放电循环容量仍保持为157.9 mAh/g,具有较好的倍率放电性能和容量保持能力。  相似文献   

11.
钟海江  唐有根  卢周广  张军 《电池》2012,42(3):142-145
研究了正极材料、正极面密度、导电剂含量及电极结构对18650型LiFePO4锂离子电池高倍率充放电性能的影响。当D50为1.92μm,比表面积为11.4 m2/g,正极面密度为2.8 g/dm2,导电剂含量为4.0%时,电池具有较好的加工性能和倍率性能。相比于单极耳结构,双极耳结构电池的内阻减小了50%,为14 mΩ左右,且分布集中;5.00C充电和15.00C放电时的表面温升很小。在2.0~3.8 V充放电,优化后的20.00C、30.00C放电容量分别为1.00C时的96.6%、86.1%,1.00C充电、10.00C放电,第300次循环的容量保持率为86.3%。  相似文献   

12.
刘小虹 《电池》2011,41(4):199-201
研制了快速充电高功率型锂离子电池,对电极材料、电解液体系、电极体系的设计等进行了研究,测试了电池的快速充电、高倍率放电、快速充电高倍率放电循环和安全性能.电池的4.00C和6.00 C充电容量分别为1.00C时的93.6%和92.1%;4.00 C、10.00 C、15.00 C和20.00 C放电容量均为1.00C时...  相似文献   

13.
李艳  胡杨  刘庆国 《电源技术》2006,30(6):488-491
通过对常温不同放电倍率的18650型锂离子蓄电池循环性能的测试表明,2C高倍率循环的锂离子蓄电池,300次容量衰减率为18.8%,而1C和0.5C放电倍率循环的电池容量衰减率分别为14.2%和10.5%。高倍率循环的Li-CoO2/石墨系锂离子蓄电池容量衰减严重。X射线衍射法(XRD)、透射电子显微镜法(TEM)、扫描电子显微镜法(SEM)分析表明,循环后的正极材料结构有明显的改变,负极表面膜增厚,导致Li 数量的减少及扩散通道阻塞,是引起锂离子蓄电池容量衰减的基本原因。  相似文献   

14.
丁冬  吴国良  庞静 《电池》2011,41(4):202-205
采用3种电极面密度(其中正极面密度分别为11.0 mg/cm2、14.0 mg/cm2和17.0 mg/cm2)组装成以磷酸铁锂(LiFe-PO4)为正极活性材料的锂离子动力电池,考察了常温循环性能.用交流阻抗、XRD和SEM等方法分析了容量衰减的机理,发现3种电池常温循环性能差别的原因,主要是电池可逆锂损失的程度不同...  相似文献   

15.
将荷电态(SOC)为2%(剩余电量为0.1 Ah)的石墨/LiFePO_4锂离子电池分别在不同温度(25℃、50℃、60℃和70℃)下存储6 h,测试常温/高温荷电保持能力、低温(-20℃)放电和常温1 C循环(2.50~3.65 V)性能。电池的常温/高温荷电保持能力和低温(-20℃)放电性能均随存储温度的升高先增强、后减弱,经60℃存储后,电池的上述性能最优;在常温下1 C循环1 500次后,高温(≥50℃)存储后电池的容量保持率约为88%。  相似文献   

16.
潘琳  欧秀芹  宋清竹  王作瑞 《电池》2011,41(4):184-186
以LiOH、H3PO4和FeSO4为原料,用无模板水热法合成LiFePO4,与葡萄糖混合后热处理,得到正极材料LiFePO4/C.XRD、SEM测试结果表明:在无模板剂或表面活性剂的条件下,水热合成法可制得纯相、颗粒细小且分散良好的LiFePO4晶体.产物在2.3~4.2 V循环,23℃时的0.20 C首次放电比容量为...  相似文献   

17.
软包装锂离子电池的高倍率放电性能   总被引:1,自引:0,他引:1  
以额定容量为1 100 mAh的063465型软包装锂离子电池为研究对象,研究了电池结构,正极活性物质与导电剂、粘结剂的配比,板板的面密度、压实密度等因素对锂离子电池高倍率放电性能的影响.制备的实验电池以15 C大电流放电,电压平台为3.5 V,循环220次(15 C放电),容量保持率为87.0%.  相似文献   

18.
汪涛  杨尘  许鹏  于维珂 《电池》2020,(2):153-156
通过加速量热(ARC)、直流内阻(DCIR)测试及容量增量分析(ICA),研究IFR 32131型磷酸铁锂(LiFePO4)/C电池以1.00 C在2.00~3.65 V充放电时的热特性。电池在充电和放电末期,均出现温度快速上升的过程,且放电发热量较充电高出1 801.6 J;充放电的热功率拐点都出现在LiFePO4的准二元相变电压区间外,表明末期的快速温升为电池极化导致,且放电极化大于充电;放电DCIR比充电高。对比高区间(20%~100%)、中区间(10%~90%)和低区间(0~80%)等3种电压区间内电池80%放电深度(DOD)的循环性能,中区间电池的循环性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号