首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Cloning of human telomeres by complementation in yeast   总被引:36,自引:0,他引:36  
S H Cross  R C Allshire  S J McKay  N I McGill  H J Cooke 《Nature》1989,338(6218):771-774
Telomeres confer stability on chromosomes by protecting them from degradation and recombination and by allowing complete replication of the end. They are genetically important as they define the ends of the linkage map. Telomeres of lower eukaryotes contain short repeats consisting of a G-rich and a C-rich strand, the G-rich strand running 5'-3' towards the telomere and extending at the end. Telomeres of human chromosomes share characteristics with those of lower eukaryotes including sequence similarity as detected by cross-hybridization. Telomeric repeats from many organisms can provide telomere function in yeast. Here we describe a modified yeast artificial chromosome (YAC) vector with only one telomere which we used to clone human telomeres by complementation in yeast. YACs containing human telomeres were identified by hydridization to an oligonucleotide of the trypanosome telomeric repeat. A subcloned human fragment from one such YAC is immediately subtelomeric on at least one human chromosome.  相似文献   

2.
Molecular cloning of human telomeres in yeast   总被引:34,自引:0,他引:34  
W R Brown 《Nature》1989,338(6218):774-776
Telomeres are the DNA sequences found at the ends of linear chromosomes. They define the boundaries of the genetical and physical maps of such chromosomes and so are particularly important for the complete mapping of large genomes that is now being attempted. Telomeres have been intensively studied in the yeast Saccharomyces cerevisiae and in ciliated protozoa: in these organisms the telomeric DNA consists of arrays of tandemly repeated short sequences in which one strand is guanosine-rich and oriented 5' to 3' towards the chromosome end. The conservation of these structural features is reflected in the observation that telomeric DNA from a variety of protozoa will function as telomeres on artificial linear mini-chromosomes in yeast. Tandem arrays of the sequence TTAGGG have been identified at the telomeres of humans and other mammals and also of trypanosomes. This indicates that the structural features of telomeres are conserved between higher and lower eukaryotes and implies that human telomeric DNA could function in yeast. I have used this idea to develop a strategy to isolate a specific human telomere as a molecular clone in yeast and have devised a simple and effective way of cloning other human telomeres and their associated sequences.  相似文献   

3.
Human subtelomeres are polymorphic patchworks of interchromosomal segmental duplications at the ends of chromosomes. Here we provide evidence that these patchworks arose recently through repeated translocations between chromosome ends. We assess the relative contribution of the principal mechanisms of ectopic DNA repair to the formation of subtelomeric duplications and find that non-homologous end-joining predominates. Once subtelomeric duplications arise, they are prone to homology-based sequence transfers as shown by the incongruent phylogenetic relationships of neighbouring sections. Interchromosomal recombination of subtelomeres is a potent force for recent change. Cytogenetic and sequence analyses reveal that pieces of the subtelomeric patchwork have changed location and copy number with unprecedented frequency during primate evolution. Half of the known subtelomeric sequence has formed recently, through human-specific sequence transfers and duplications. Subtelomeric dynamics result in a gene duplication rate significantly higher than the genome average and could have both advantageous and pathological consequences in human biology. More generally, our analyses suggest an evolutionary cycle between segmental polymorphisms and genome rearrangements.  相似文献   

4.
DNA sequences of telomeres maintained in yeast   总被引:95,自引:0,他引:95  
J Shampay  J W Szostak  E H Blackburn 《Nature》1984,310(5973):154-157
Telomeres, the ends of eukaryotic chromosomes, have long been recognized as specialized structures. Their stability compared with broken ends of chromosomes suggested that they have properties which protect them from fusion, degradation or recombination. Furthermore, a linear DNA molecule such as that of a eukaryotic chromosome must have a structure at its ends which allows its complete replication, as no known DNA polymerase can initiate synthesis without a primer. At the ends of the relatively short, multi-copy linear DNA molecules found naturally in the nuclei of several lower eukaryotes, there are simple tandemly repeated sequences with, in the cases analysed, a specific array of single-strand breaks, on both DNA strands, in the distal portion of the block of repeats. In general, however, direct analysis of chromosomal termini presents problems because of their very low abundance in nuclei. To circumvent this problem, we have previously cloned a chromosomal telomere of the yeast Saccharomyces cerevisiae on a linear DNA vector molecule. Here we show that yeast chromosomal telomeres terminate in a DNA sequence consisting of tandem irregular repeats of the general form C1-3A. The same repeat units are added to the ends of Tetrahymena telomeres, in an apparently non-template-directed manner, during their replication on linear plasmids in yeast. Such DNA addition may have a fundamental role in telomere replication.  相似文献   

5.
A O Wilkie  J Lamb  P C Harris  R D Finney  D R Higgs 《Nature》1990,346(6287):868-871
The instability of chromosomes with breaks induced by X-irradiation led to the proposal that the natural ends of chromosomes are capped by a specialized structure, the telomere. Telomeres prevent end-to-end fusions and exonucleolytic degradation, enable the end of the linear DNA molecule to replicate, and function in cell division. Human telomeric DNA comprises approximately 2-20 kilobases (kb) of the tandemly repeated sequence (TTAGGG)n oriented 5'----3' in towards the end of the chromosome, interspersed with variant repeats in the proximal region. Immediately subtelomeric lie families of unrelated repeat motifs (telomere-associated sequences) whose function, if any, is unknown. In lower eukaryotes the formation and maintenance of telomeres may be mediated enzymatically (by telomerase) or by recombination; in man the mechanisms are poorly understood, although telomerase has been identified in HeLa cells. Here we describe an alpha thalassaemia mutation associated with terminal truncation of the short arm of chromosome 16 (within band 16p13-3) to a site 50 kb distal to the alpha globin genes, and show that (TTAGGG)n has been added directly to the site of the break. The mutation is stably inherited, proving that telomeric DNA alone is sufficient to stabilize the broken chromosome end. This mechanism may occur in any genetic disease associated with chromosome truncation.  相似文献   

6.
Wang F  Podell ER  Zaug AJ  Yang Y  Baciu P  Cech TR  Lei M 《Nature》2007,445(7127):506-510
Telomeres were originally defined as chromosome caps that prevent the natural ends of linear chromosomes from undergoing deleterious degradation and fusion events. POT1 (protection of telomeres) protein binds the single-stranded G-rich DNA overhangs at human chromosome ends and suppresses unwanted DNA repair activities. TPP1 is a previously identified binding partner of POT1 that has been proposed to form part of a six-protein shelterin complex at telomeres. Here, the crystal structure of a domain of human TPP1 reveals an oligonucleotide/oligosaccharide-binding fold that is structurally similar to the beta-subunit of the telomere end-binding protein of a ciliated protozoan, suggesting that TPP1 is the missing beta-subunit of human POT1 protein. Telomeric DNA end-binding proteins have generally been found to inhibit rather than stimulate the action of the chromosome end-replicating enzyme, telomerase. In contrast, we find that TPP1 and POT1 form a complex with telomeric DNA that increases the activity and processivity of the human telomerase core enzyme. We propose that POT1-TPP1 switches from inhibiting telomerase access to the telomere, as a component of shelterin, to serving as a processivity factor for telomerase during telomere extension.  相似文献   

7.
Telomeric repeat from T. thermophila cross hybridizes with human telomeres   总被引:38,自引:0,他引:38  
The ends (telomeres) of eukaryotic chromosomes must have special features to ensure their stability and complete replication. Studies in yeast, protozoa, slime moulds and flagellates show that telomeres are tandem repeats of simple sequences that have a G-rich and a C-rich strand. Mammalian telomeres have yet to be isolated and characterized, although a DNA fragment within 20 kilobases of the telomeres of the short arms of the human sex chromosomes has been isolated. Recently we showed that a chromosome from the fission yeast Schizosaccharomyces pombe could, in some cases, replicate as an autonomous mini-chromosome in mouse cells. By extrapolation from other systems, we reasoned that mouse telomeres could be added to the S. pombe chromosome ends in the mouse cells. On setting out to test this hypothesis we found to our surprise that the telomeric probe used (containing both the S. pombe and Tetrahymena thermophila repeats) hybridized to a series of discrete fragments in normal mouse DNA and DNA from a wide range of eukaryotes. We show here that the sequences hybridizing to this probe are located at the telomeres of most, if not all, human chromosomes and are similar to the Tetrahymena telomeric-repeat component of the probe.  相似文献   

8.
A DNA damage checkpoint response in telomere-initiated senescence   总被引:1,自引:0,他引:1  
Most human somatic cells can undergo only a limited number of population doublings in vitro. This exhaustion of proliferative potential, called senescence, can be triggered when telomeres--the ends of linear chromosomes-cannot fulfil their normal protective functions. Here we show that senescent human fibroblasts display molecular markers characteristic of cells bearing DNA double-strand breaks. These markers include nuclear foci of phosphorylated histone H2AX and their co-localization with DNA repair and DNA damage checkpoint factors such as 53BP1, MDC1 and NBS1. We also show that senescent cells contain activated forms of the DNA damage checkpoint kinases CHK1 and CHK2. Furthermore, by chromatin immunoprecipitation and whole-genome scanning approaches, we show that the chromosome ends of senescent cells directly contribute to the DNA damage response, and that uncapped telomeres directly associate with many, but not all, DNA damage response proteins. Finally, we show that inactivation of DNA damage checkpoint kinases in senescent cells can restore cell-cycle progression into S phase. Thus, we propose that telomere-initiated senescence reflects a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres.  相似文献   

9.
Is there left-handed DNA at the ends of yeast chromosomes?   总被引:28,自引:0,他引:28  
R M Walmsley  J W Szostak  T D Petes 《Nature》1983,302(5903):84-86
Tracts of the alternating copolymer poly(dGdT . dCdA) have been observed in a variety of eukaryotes. Such tracts are of particular interest since homopolymers of this sequence can exist in vitro as left-handed Z form DNA. We have found that the yeast Saccharomyces cerevisiae contains at least 30 poly(GT) tracts at dispersed genomic locations. We show here that one subset of these tracts is located at the ends (telomeres) of the yeast chromosome. In addition, we show that poly(dGdT . dCdA) tracts are added to the ends of the extrachromosomal ribosomal DNA molecules of Tetrahymena when cloned in yeast. These data represent the first reported association between a homopolymeric sequence and a chromosome structure.  相似文献   

10.
Verdun RE  Karlseder J 《Nature》2007,447(7147):924-931
During the evolution of linear genomes, it became essential to protect the natural chromosome ends to prevent triggering of the DNA-damage repair machinery and enzymatic attack. Telomeres - tightly regulated complexes consisting of repetitive G-rich DNA and specialized proteins - accomplish this task. Telomeres not only conceal linear chromosome ends from detection and inappropriate repair but also provide a buffer to counteract replication-associated shortening. Lessons from many model organisms have taught us about the complications of maintaining these specialized structures. Here, we discuss how telomeres interact and cooperate with the DNA replication and DNA-damage repair machineries.  相似文献   

11.
12.
LY Chen  S Redon  J Lingner 《Nature》2012,488(7412):540-544
The lengths of human telomeres, which protect chromosome ends from degradation and end fusions, are crucial determinants of cell lifespan. During embryogenesis and in cancer, the telomerase enzyme counteracts telomeric DNA shortening. As shown in cancer cells, human telomerase binds the shelterin component TPP1 at telomeres during the S phase of the cell cycle, and adds ~60 nucleotides in a single round of extension, after which telomerase is turned off by unknown mechanisms. Here we show that the human CST (CTC1, STN1 and TEN1) complex, previously implicated in telomere protection and DNA metabolism, inhibits telomerase activity through primer sequestration and physical interaction with the protection of telomeres 1 (POT1)–TPP1 telomerase processivity factor. CST competes with POT1–TPP1 for telomeric DNA, and CST–telomeric-DNA binding increases during late S/G2 phase only on telomerase action, coinciding with telomerase shut-off. Depletion of CST allows excessive telomerase activity, promoting telomere elongation. We propose that through binding of the telomerase-extended telomere, CST limits telomerase action at individual telomeres to approximately one binding and extension event per cell cycle. Our findings define the sequence of events that occur to first enable and then terminate telomerase-mediated telomere elongation.  相似文献   

13.
After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion that occurred some time after the split of Homininae from Ponginae, and propose an evolutionary history of the inversion.  相似文献   

14.
Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.  相似文献   

15.
G B Morin 《Nature》1991,353(6343):454-456
Telomeres define the ends of chromosomes; they consist of short tandemly repeated DNA sequences loosely conserved in eukaryotes (G1-8(T/A)1-4). Telomerase is a ribonucleoprotein which, in vitro, recognizes a single-stranded G-rich telomere primer and adds multiple telomeric repeats to its 3' end by using a template in the RNA moiety. In conjunction with other components, telomerase may balance the loss of telomeric repeats due to DNA replication. Another role of telomerase may be the de novo formation of telomeres. In eukaryotes like Tetrahymena, this process is an integral part of the formation of macronuclear chromosomes. In other eukaryotes this process stabilizes broken chromosomes. A case of human alpha-thalassaemia is caused by a truncation of chromosome 16 that has been healed by the addition of telomeric repeats (TTAGGG)n. Using an in vitro assay, I show here that human telomerase correctly recognizes the chromosome 16 breakpoint sequence and adds (TTAGGG)n repeats. The DNA sequence requirements are minimal and seem to define two modes of DNA recognition by telomerase.  相似文献   

16.
17.
H J Cooke  W R Brown  G A Rappold 《Nature》1985,317(6039):687-692
Pairing of human X and Y chromosomes during meiosis initiates within the so-called pairing region at the telomeres or the chromosome short arms. Using DNA from the Y chromosome we found sequence homology in the pairing region of the human X and Y chromosomes. This DNA is telomeric, contains repetitive sequences and is highly polymorphic in the population. The polymorphism has allowed family studies which show the sequences are not inherited as though linked to the sex chromosomes. This 'pseudoautosomal' pattern of inheritance points to an obligate recombination in the pairing region of the sex chromosomes during male meiosis.  相似文献   

18.
19.
20.
Cryptic simplicity in DNA is a major source of genetic variation   总被引:107,自引:0,他引:107  
D Tautz  M Trick  G A Dover 《Nature》1986,322(6080):652-656
DNA regions which are composed of a single or relatively few short sequence motifs usually in tandem ('pure simple sequences') have been reported in the genomes of diverse species, and have been implicated in a range of functions including gene regulation, signals for gene conversion and recombination, and the replication of telomeres. They are thought to accumulate by DNA slippage and mispairing during replication and recombination or extension of single-strand ends. In order to systematize the range of DNA simplicity and the genetic nature of the regions that are simple, we have undertaken an extensive computer search of the DNA sequence library of the European Molecular Biology Laboratory (EMBL). We show here that nearly all possible simple motifs occur 5-10 times more frequently than equivalent random motifs. Furthermore, a new computer algorithm reveals the widespread occurrence of significantly high levels of a new type of 'cryptic simplicity' in both coding and noncoding DNA. Cryptically simple regions are biased in nucleotide composition and consist of scrambled arrangements of repetitive motifs which differ within and between species. The universal existence of DNA simplicity from monotonous arrays of single motifs to variable permutations of relatively short-lived motifs suggests that ubiquitous slippage-like mechanisms are a major source of genetic variation in all regions of the genome, not predictable by the classical mutation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号