首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
天津表层土壤中多环芳烃的主要来源   总被引:18,自引:7,他引:18  
用主成分分析和多元线性回归分析方法研究了天津3个不同空间区域表土中PAHs的来源及其相对贡献.结果表明:燃煤和炼焦是各区最重要的PAHs释放源.塘沽汉沽高值区尤其如此,其燃煤和炼焦二者合计占总排放贡献的79%,交通源仅占21%.市中心及近郊区交通来源上升到与燃煤来源相当的水平(约各占35%),此外,焚烧产生的PAHs也占很高比例(21%).农村低值区则呈现出更多多源特点;秸秆燃烧是本区独有的,约占总贡献的11%.根据源解析得到的结果与根据燃料用量和排放因子计算的排放结果有一定可比性.  相似文献   

2.
鞍山市大气PM10中多环芳烃(PAHs)的污染特征及其来源   总被引:2,自引:3,他引:2  
2005年3月和8月在辽宁省鞍山市8个采样点采集PM10样品,用液相色谱-质谱法分析了PM10上负载的11种多环芳烃(PAHs),并探讨了其分布特征和来源.结果表明:鞍山市PM10中ρ(PAHs)时空变化特征显著,冬季高于夏季,且工业区PAHs污染最严重;在PAHs中4环以上的组分占主导,冬季ρ(4环PAHs)较高,而在夏季ρ(5~6环PAHs)较高.运用比值法和主成分分析法对PAHs来源进行分析,发现冬季的主要污染源为燃煤排放、机动车尾气排放和炼钢工业排放;夏季主要污染源为燃煤排放、机动车尾气排放、生物质燃烧排放和炼钢工业排放等,来源较冬季复杂.机动车尾气排放对PAHs的贡献在2个季节都较为明显,冬季燃煤排放的贡献比重明显增加.   相似文献   

3.
重庆主城区春季大气PM10及PM2.5中多环芳烃来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
于2012年春季采集了重庆主城区和缙云山共6个环境采样点的大气PM10、PM2.5样品,同步采集了燃煤尘、机动车尾气尘、施工机械尾气尘、船舶尾气尘、餐饮油烟尘、生物质燃烧尘及土壤尘等7类污染源,采集到有效受体样品139个、有效源样品233个,使用GC-MS分析样品中18种PAHs的质量浓度(ρ),分析了PM10、PM2.5上载带PAHs的污染特征,并分别运用比值法、主成分分析法及CMB(化学质量平衡)受体模型法对PM10、PM2.5中的PAHs进行来源解析,所得源解析结果较为一致. 结果表明:重庆主城区大气PM10、PM2.5中ρ(PAHs)较低,ρ(PAHs)分别为22.03~31.71、19.02~29.92 ng/m3,其中位于工业区新山村采样点的ρ(PAHs)最高. PM10载带的PAHs有86%~99%集中在PM2.5中,说明PAHs主要富集在PM2.5中. 重庆主城区大气PM10、PM2.5载带的PAHs主要来自机动车尾气尘和燃煤尘的贡献,这2类源对PM10的贡献率分别为25.89%、32.80%;而在PM2.5中,机动车尾气尘的贡献率较高,可达62%左右.   相似文献   

4.
为研究武汉市大气质量状况,在武汉市ID(工业区)、DT(中心城区)、BG(植物园)设3个采样点,连续1 a同步采集了大气中的PM2.5(细颗粒物)样品,并研究了其中PAHs(多环芳烃)的质量浓度、来源和健康风险.结果表明,武汉市ID、DT、BG采样点的ρ(PAHs)年均值分别为(75.60±28.12)(59.77±22.81)(24.27±9.15)ng/m3,并呈冬季最高、夏季最低的季节性变化趋势.PMF(正定矩阵因子分析)结果显示,ID、DT、BG采样点的PAHs的主要来源分别为燃煤和扬尘(35%和33%)、机动车和扬尘(30%和34%)、机动车和木质燃烧(33%和32%),在ID和DT采样点,扬尘对大气颗粒物中PAHs的贡献都很大,而燃煤和木质燃烧分别是ID和BG采样点PAHs的重要来源,在3个采样点中,机动车对颗粒物中PAHs贡献都较大,尤其是DT和BG采样点,机动车的贡献都超过30%.利用后向轨迹模型分析采样期间武汉市的气团来源,并结合每天的ρ(PAHs)发现,不同聚类气团对应的ρ(PAHs)差异很小,表明区域传输对武汉市PAHs贡献不大.通过武汉市大气颗粒物中PAHs吸入风险评估发现,武汉市PAHs的吸入风险范围在10-7~10-5之间,ID和DT采样点的部分人群的吸入风险稍高于安全范围(10-6以下),有潜在的致癌风险.   相似文献   

5.
辽河口湿地土壤多环芳烃的分布及来源研究   总被引:2,自引:2,他引:2  
廖书林  郎印海  王延松 《环境科学》2011,32(4):1094-1100
于2008年10月、2009年5月和8月采集辽河口湿地31个表层土壤样品,利用GC-FID技术定量分析其16种优控多环芳烃(PAH)含量.结果表明,PAHs总量分布范围为293.4~1936.9 ng·g-1,平均值为851.5 ng·g-1,其中油井区苇田PAHs含量最高(1717.5 ng·g-1),滩涂区最低(614.6 ng·g-1).2008年10月PAHs总量和中高环组分比重均高于2009年5月和8月.应用不同环数的相对丰度和比值法进行来源解析,结果表明,燃烧是2008年10月的主要来源,石油污染和燃烧源的混合来源为2009年5月和8月的主要来源.主成分分析和多元线性回归法显示交通污染和燃煤混合来源为2008年10月PAHs的主要来源,贡献率为45.5%;石油和交通混合污染是2009年5月和8月PAHs的主要来源,贡献率分别为75.2%和42.2%.  相似文献   

6.
为探究港口地区污染大气中多环芳烃(PAHs)的污染特征和潜在来源,以青岛港为研究对象,于2018年8月至2019年5月期间采集了4个季节的PM2.5样品(n=59),分析了PM2.5中PAHs的季节变化和组成特征,使用相关性分析探索了气象因素对PAHs浓度的影响,并采用正定矩阵因子分解和潜在来源贡献函数模型对潜在来源进行解析.结果表明,ρ(PAHs)平均值为(8.11±12.31) ng·m-3,秋冬季节高于春夏季节.PAHs的季节性分子组成相似,以4~5环PAHs (75.43%)为主.荧蒽、苯并[e]芘、苯并[a]蒽、菲、芘和䓛是研究区域PAHs的优势物种,这与船舶尾气中主要化合物组成相似.相关性分析表明,PAHs浓度与温度和相对湿度呈极显著负相关,与大气压和风向呈极显著正相关,与风速的相关性较差.PMF分析提取出6个贡献因子,结果表明,青岛港地区受航运排放(28.83%)影响最大,其次是机动车排放(20.49%)以及原油挥发(13.47%)等,夏季受航运排放影响最大.PSCF结果表明,京津冀、环渤海和鲁北地区是远距离传输的主要来源区域.  相似文献   

7.
边璐  李田  侯娟 《环境科学》2013,34(10):3840-3846
以上海市内环高架道路径流中的多环芳烃(PAHs)为研究对象,于2012年7~9月,实测了8场降雨的道路径流中的PAHs,了解了城市交通干道径流中PAHs的污染状况,并采用正定矩阵因子分解(PMF)和主成分分析/多元线性回归(PCA/MLR)两种模型对径流中的PAHs进行源解析.因子分析表明,径流中Σ16 PAHs的浓度范围为1.585~7.523μg·L-1,两种模型对于PAHs的来源有较为一致的判定.交通源为高架道路地表径流中PAHs的主要来源,PMF和PCA/MLR得到的源贡献率分别为37.7%和44.3%,其余3种来源石油源、燃气源和其他源,PMF得到的源贡献率依次为21.9%、26.4%、14.0%;与之对应,PCA/MLR得到的源贡献率依次为28.9%、18.3%、8.5%.PMF和PCA/MLR模型的计算值与实测值拟合较好,相关系数分别为0.961和0.997.  相似文献   

8.
北京PM2.5中多环芳烃的污染特征及来源研究   总被引:10,自引:2,他引:10  
采用GC/MS定量分析了2003年9月至2004年7月期间北京市PM2.5中16种优控PAHs的含量.研究表明.PAHs总浓度年均值139.59ng·m-3,变化范围1.02-776.4 ng·m-3.冬季浓度最高271.05 ng·m-3,夏季最低26.10 ng·m-3,反映了主要源排放(燃煤)变化与气象条件的共同影响.全年平均不同环数PAHs所占总浓度的比例由大到小:4环>5环>6环>3环>2环;冬季4环PAHs所占比例最大(48.7%),其次为5环(32.5%)和6环PAHs(14.9%);夏季5环、6环PAHs所占比例最高(36.5%),其次为4环PAHs(24.1%).源排放特征化合物比值法和主成分分析法结果都表明,燃煤、机动车和油类挥发是多环芳烃的3类主要污染源,能够解释主成分分析法总方差的88%.  相似文献   

9.
南京北郊雾天PM10中多环芳烃粒径分布特征   总被引:2,自引:3,他引:2  
为研究雾天PM10中多环芳烃粒径分布特征,2007-11-15~2007-12-30在南京北郊进行了PM10分8级粒径多环芳烃(PAHs)成分连续样品采集,由同步气象观测资料选出雾天与晴天样本作为对比,用GC-MS分析其中16种PAHs含量.雾天夜间PM2.1和PM9.0平均质量浓度为120.34μg.m-3和215.92μg.m-3,接近白天PM2.1(126.76μg.m-3)和PM9.0(213.41μg.m-3),昼、夜基本没有变化;晴天夜间PM2.1和PM9.0平均质量浓度为71.45μg.m-3和114.33μg.m-3,高于白天PM2.1(41.02μg.m-3)和PM9.0(74.38μg.m-3),昼、夜变化很明显;雾天PM2.1∑16PAHs为49.97 ng.m-3,是晴天(33.30 ng.m-3)1.50倍,PM9.0∑16PAHs为59.45 ng.m-3,是晴天(40.80 ng.m-3)1.46倍;PM2.1和PM9.0中PAHs单体平均浓度均为荧蒽最高,且雾天(PM2.1为7.98 ng.m-3,PM9.0为9.99 ng.m-3)高于晴天(PM2.1为5.23 ng.m-3,PM9.0为6.77 ng.m-3);雾天PM2.1和PM9.0中苯并[a]芘的浓度为1.77ng.m-3和1.99 ng.m-3,高于晴天(PM2.1为1.46 ng.m-3,PM9.0为1.84 ng.m-3).结果表明,雾过程加重了近地面大气PM2.5和PM10的污染;雾天与晴天PM10∑16PAHs粒径分布的昼夜特征与PM10在2种天气系统下粒径分布的昼夜特征基本一致,均为双峰型分布,分别位于积聚模态和粗模态粒子.白天雾过程对PM10及PM10∑16PAHs的粒径分布影响比较大,夜间雾过程则对其没有太大影响.  相似文献   

10.
广州市大气可吸入颗粒物(PM10)中多环芳烃的季节变化   总被引:24,自引:1,他引:24  
采集广州五山、荔湾(2002-06-12~2003-06-31)2个采样点共112个PM10样品进行了GC/MS分析,结果表明2采样点全年多环芳烃浓度范围为8.11~106.26 ng·m-3,呈现出夏季低冬季高的特征.PAHs化合物的相对分布也呈明显的季节变化,5~6环PAHs的比重夏季比冬季高,而3~4环PAHs的比重冬季比夏季高.冬季PAHs可分为2种模式,不同模式之间PAHs的浓度和分布特征有明显的差异.统计结果表明,广州市多环芳烃浓度变化主要受气象条件的影响,风速(当温度<20℃时)和温度(当温度>20℃时)是影响多环芳烃浓度最主要的因素.此外,本研究还表明,汽车尾气排放是广州市大气颗粒物多环芳烃污染最主要的污染来源.  相似文献   

11.
本研究于2018年10月4日至2019年1月30日在洛阳市高新和林校2个采样点位同步连续采集秋冬季PM2.5样品,使用气相色谱-质谱联用仪(GC-MS)对PM2.5中优先控制的16种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)进行了分析测定.对优良天和污染天PM2.5中16种PAHs的质量浓度和组成分布特征进行了研究,利用特征比值法和主成分分析法对其主要来源进行了定性解析,并使用苯并[a]芘(BaP)毒性当量法和增量终生致癌风险模型评估了对人体的健康风险.结果表明在采样期内,高新和林校两个采样点的PM2.5中16种PAHs质量浓度变化范围分别为24.33~90.26 ng·m-3和23.81~76.99 ng·m-3.随着PM2.5污染程度的加重,PAHs浓度明显升高(污染天为优良天的1.3倍),不同环数PAHs贡献顺序均为:4环(43%~48%) > 5~6环(32%~35%) > 2~3环(20%~22%).大气中PAHs主要来自于燃烧源,包括燃煤、生物质燃烧以及机动车排放等,其中燃煤对PAHs污染贡献最大(优良天:49.28%~56.38%,污染天:49.44%~60.60%).BaP毒性当量浓度表明,污染天存在更高的人体健康风险;增量终生致癌风险结果表明,污染天致癌风险高于优良天,成人呼吸暴露风险高于儿童,在研究区域内不同污染水平下健康风险属于可接受水平(<1×10-6).  相似文献   

12.
张健  樊曙先  孙玉  张悦  魏锦成 《环境科学》2015,36(4):1173-1181
为了研究厦门春季市区与郊区PM10中PAHs的污染状况和分布特征,利用GC-MS分析了2013年4月11~21日日间和夜间分别在厦门市、郊两地采集的气溶胶样品,并得到了厦门市区和郊区18种PAHs的浓度,研究得出厦门郊区ΣPAHs昼夜变化比市区小,市区的白天是夜间的1.83倍,并且PAHs的浓度仍然是低于国家的环境标准的.在不同的时间和空间尺度下,ΣPAHs均呈双峰型分布,市区和郊区昼、夜的PAHs组分均以中低环PAHs为主,高环PAHs随着粒径的增大而逐渐减小,而低环PAHs所占比例逐渐增大,市区的PM10中2~4环PAHs粒径的昼、夜分布有很大差异,而5~7环差异不大.并用DR方法分析了PAHs的来源,得出厦门春季市区和郊区PAHs的主要贡献源为汽油、柴油的燃烧和冶炼厂的熔炉排放的废气.在采样期间,郊区ΣPAHs浓度与温度、风向呈负相关关系,与能见度和风速呈正相关关系,而市区的ΣPAHs浓度除白天与温度的相关性跟郊区相同外,与其他气象要素的相关性和郊区基本相反.  相似文献   

13.
厦门市不同功能区冬季PM10中多环芳烃的污染特征   总被引:3,自引:1,他引:3  
2004年冬季在厦门市4个不同功能区连续10d采集并分析了PM10中16种优控多环芳烃(PAHs).研究发现,各个功能区大气PM10中多环芳烃总浓度(∑PAHs)存在明显差别:工业区(湖里)10.87~27.54ng·m-3、旅游区(鼓浪屿)7.79~21.14ng·m-3、居民区(洪文)6.52~13 39ng·m-3、森林区(小坪)5.20~11.43ng·m-3;但各个功能区PM10中各种PAH化合物的相对组成趋于一致,所占比例最高的前4种化合物为菲、芘、(艹屈)和芴,表明冬季不同功能区PM10中PAHs的主要污染来源在很大程度上相似或相同.根据典型污染来源中特征化合物比值如苯并(a)蒽/(艹屈)、荧蒽/芘和芘/苯并(a)芘及其有机碳/元素碳的值,推断厦门市PM10中的PAHs主要来源于汽车尾气的排放.  相似文献   

14.
陈璋琪 《地球与环境》2019,47(3):275-282
为了解泉州市大气PM_(2.5)中PAHs的污染特征,明确关键污染源,于2016年2月~10月采集了清源山、涂山街、万安和东海四个站点的PM_(2.5)样品,采用前进样口直接热解析气相色谱-质谱联用仪(TD-GC/MS)定量分析了19种多环芳烃(PAHs)的浓度水平,并对其健康风险进行评价。结果表明,采样期间泉州市大气PM_(2.5)中∑PAHs质量浓度为1. 98±0. 75 ng/m~3,显著低于国内大多数城市;呈现冬季春季夏季秋季的季节变化特点,以及涂山街万安东海清源山的空间分布特征。其中,5环PAHs占比最大,为30%~38%,其次为3环,4环和6环,占比分别为18%~27%、22%~25%、和13%~19%。特征比值法分析发现,夏、秋季PAHs受生物质燃烧或煤燃烧的影响大于冬、春季;冬、春季化石燃料燃烧(如机动车排放)的影响较大。大气PM_(2.5)中PAHs对儿童和成人的超额终生致癌风险分别为0. 7×10~(-7)和1. 4×10~(-7),不具有致癌风险。  相似文献   

15.
广州市灰霾期大气PM_(10)中水溶性离子特征   总被引:1,自引:0,他引:1  
采集广州市大气PM10样品并分别对冬夏两季灰霾和非灰霾期PM10中水溶性离子进行分析。实验表明,广州市灰霾期PM10中水溶性离子的质量浓度要高出非灰霾期4~15倍,其中NO3-浓度升幅最大。非灰霾期主要水溶性无机离子的浓度顺序为SO42->NH4+>NO3-,灰霾期为SO42->NO3->NH4+,严重灰霾期则为NO3->SO42->NH4+。非灰霾期SO42-/NO3-质量浓度比为1.78~3.57,灰霾期为1.04~1.20,而在严重灰霾期则<1,说明灰霾利于NO3-的二次转化生成。实验还表明,灰霾期PM10较非灰霾天气偏酸性,灰霾期SO2和NOx的高转化率导致SO42-和NO3-的大幅增加是加重灰霾期PM10污染的主要原因。  相似文献   

16.
利用高分辨率飞行时间气溶胶质谱仪(HR-ToF-AMS)在华北背景地区——上甸子区域大气本底站开展亚微米气溶胶(NR-PM_1)化学组分及粒径分布的连续观测实验,观测时段为2015年10月17日至2016年1月27日,涵盖了秋、冬两季.结果表明,整个观测期间NR-PM_1平均质量浓度为25.2μg·m~(-3),PM_1中有机物占绝对优势,硝酸盐占的比例高于硫酸盐.各化学组分平均粒径分布以积聚模态为主,其中,有机物峰形最宽,峰值粒径最小,硝酸盐峰值粒径最大,表明有机物在颗粒物形成、增长初期及老化阶段均有贡献,硝酸盐在气溶胶粒子老化过程中更易于增长为大粒子.有机物种元素特性分析结果显示,秋、冬季有机气溶胶平均氧碳比(O/C)和氢碳比(H/C)为0.58和1.58,OM/OC达1.91,有机气溶胶的氧化程度高于城市站点平均水平.在华北地区污染环境下,有机气溶胶演变途径Van Krevelen拟合曲线斜率为-0.21,其老化潜质和速率较珠三角地区和欧美地区城市要慢.对比污染时段和清洁时段化学组成特征发现,在污染时段,硝酸盐质量浓度及其对PM_1的贡献率超过硫酸盐,有机物氧化程度明显高于清洁时段.后径向轨迹气团分析结果显示,污染时段气团来向较为复杂,来自西部,南部以及东北部气团均有贡献,清洁时段,主要受来自西伯利亚洁净空气的影响,对站点污染物扩散作用明显.  相似文献   

17.
奥运期间北京交通环境细颗粒物中多环芳烃特征研究   总被引:7,自引:1,他引:7  
采用GC/MS测定了奥运空气质量保障措施实施期间(2008年8月)及非奥运时段(2008年6月、2009年8月)北京市北四环道路边PM2.5中12种优控PAHs含量,并应用特征化合物比值法对PAHs来源进行了识别.研究表明,奥运空气质量保障措施实施期问PAHs总浓度平均为4.77 ng·m-3,较非奥运时段下降了59%...  相似文献   

18.
为了给华中地区大气污染防制提供数据和理论支持,于2018年1月13~24日的一次重度污染期间,利用颗粒物中流量采样器采集黄冈市大气PM2.5样品48个,运用电感耦合等离子体质谱仪(ICP-MS)对样品中Li、 Be、 V、 Se、 Sr、 Mo、 Ag、 Ba、 Tl、 Th、 Bi和U这12种元素进行分析,基于正定矩阵因子分析法(PMF)对此次污染来源进行分析,并结合后向轨迹模式中的聚类分析法、潜在源分析法(PSCF)和浓度权重分析法(CWT)分析了黄冈市此次PM2.5外来输送通道及潜在源分布情况.结果表明,此次污染内因是静稳高湿气象条件的出现,外因是污染的输入,总共有5种污染源,分别为燃料燃烧源(10.59%)、地壳源(24.22%)、工业源(3.16%)、燃煤源(47.57%)和交通源(14.45%).主要的气流轨迹类型有两种,短距离传输占比62.50%,长距离传输占37.50%.本次污染贡献较大的区域有湖北的中东部、湖南的东北部、安徽的西南部以及河南的南部等地,华中地区存在南北方向的传输通道.除了本地污染之外,区域传输的影响不容忽视,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号