首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Hepatitis C virus (HCV) infection-induced oxidative stress is a major risk factor for the development of HCV-associated liver disease. Sulforaphane (SFN) is an antioxidant phytocompound that acts against cellular oxidative stress and tumorigenesis. However, there is little known about its anti-viral activity. In this study, we demonstrated that SFN significantly suppressed HCV protein and RNA levels in HCV replicon cells and infectious system, with an IC50 value of 5.7 ± 0.2 μM. Moreover, combination of SFN with anti-viral drugs displayed synergistic effects in the suppression of HCV replication. In addition, we found nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 induction in response to SFN and determined the signaling pathways involved in this process, including inhibition of NS3 protease activity and induction of IFN response. In contrast, the anti-viral activities were attenuated by knockdown of HO-1 with specific inhibitor (SnPP) and shRNA, suggesting that anti-HCV activity of SFN is dependent on HO-1 expression. Otherwise, SFN stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K) leading Nrf2-mediated HO-1 expression against HCV replication. Overall, our results indicated that HO-1 is essential in SFN-mediated anti-HCV activity and provide new insights in the molecular mechanism of SFN in HCV replication.  相似文献   

2.
3.
Liu  Zhongshun  Xuan  Baoqin  Tang  Shubing  Qian  Zhikang 《中国病毒学》2021,36(6):1352-1362
Virologica Sinica - Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase inhibitor that shows marked efficacy against many types of cancers and is approved to treat severe metastatic...  相似文献   

4.
5.
Yan  Hai-Yan  Wang  Hui-Qiang  Zhong  Ming  Wu  Shuo  Yang  Lu  Li  Ke  Li  Yu-Huan 《中国病毒学》2021,36(5):1154-1164
Virologica Sinica - Influenza A viruses (IAV) are responsible for seasonal flu epidemics, which can lead to high morbidity and mortality each year. Like other viruses, influenza virus can hijack...  相似文献   

6.
7.
8.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma. While searching for new natural anti-HCV agents in agricultural products, we found a potent inhibitor of HCV RNA expression in extracts of blueberry leaves when examined in an HCV subgenomic replicon cell culture system. This activity was observed in a methanol extract fraction of blueberry leaves and was purified by repeated fractionations in reversed-phase high-performance liquid chromatography. The final purified fraction showed a 63-fold increase in specific activity compared with the initial methanol extracts and was composed only of carbon, hydrogen, and oxygen. Liquid chromatography/mass-ion trap-time of flight analysis and butanol-HCl hydrolysis analysis of the purified fraction revealed that the blueberry leaf-derived inhibitor was proanthocyanidin. Furthermore, structural analysis using acid thiolysis indicated that the mean degree of polymerization of the purified proanthocyanidin was 7.7, consisting predominantly of epicatechin. Proanthocyanidin with a polymerization degree of 8 to 9 showed the greatest potency at inhibiting the expression of subgenomic HCV RNA. Purified proanthocyanidin showed dose-dependent inhibition of expression of the neomycin-resistant gene and the NS-3 protein gene in the HCV subgenome in replicon cells. While characterizing the mechanism by which proanthocyanidin inhibited HCV subgenome expression, we found that heterogeneous nuclear ribonucleoprotein A2/B1 showed affinity to blueberry leaf-derived proanthocyanidin and was indispensable for HCV subgenome expression in replicon cells. These data suggest that proanthocyanidin isolated from blueberry leaves may have potential usefulness as an anti-HCV compound by inhibiting viral replication.Hepatitis C virus (HCV)2 is often associated with the development of chronic liver diseases. Infection by HCV causes chronic hepatitis at high rates and finally results in liver cirrhosis and subsequent occurrence of hepatocellular carcinoma (13). The number of people worldwide who are infected by HCV is estimated to be over 200 million with 2 million infections in Japan (4). The South Kyushu area of Japan, including Miyazaki prefecture, has a high prevalence of this virus, and it is now recognized as a social problem. There is no vaccine effective for HCV at present. The elimination of HCV may be achieved by a combination of pegylated α-interferon and ribavirin, a broad spectrum antiviral drug (46). However, virological response to this combination therapy has been reported to be 80% for genotypes 2 and 3, but less than 50% for genotype 1 (7, 8). Moreover, α-interferon is associated with severe side-effects, including leucopenia, thrombocytopenia, depression, fatigue, and flu-like symptoms, and ribavirin is associated with side-effects such as hemolytic anemia (9). Therefore, establishment of a new modality of treatment without serious adverse effects is still required.Considering the prolonged period (20–30 years) required for development of liver cirrhosis and hepatocellular carcinoma in individuals infected with HCV, we speculated that progression of the disease might be influenced by daily diet. Our research project focuses on the daily use of agricultural products that could cure or reduce the risk of disease progression by HCV. Thus, we screened local agricultural products (1700 samples from 283 species) for their suppressive activity against HCV subgenome expression using an HCV replicon cell system. We found a significant suppressive activity in extracts of blueberry leaves. Blueberries are classified in the genus Vaccinium, and the species are native only to North America. Blueberry leaves have high quinic acid and chlorogenic acid contents and also significant flavonol glycosides such as rutin. Thus, they are high in antioxidant activity. In our subsequent screening studies using various kinds of blueberry species, the most potent activity was observed in the leaf of rabbit-eye blueberry (Vaccinium virgatum Aiton), which is cultivated in southern areas of Japan.In this study, extracts of rabbit-eye blueberry leaves were used in an effort to purify and identify the compound responsible for inhibition of the expression of subgenomic HCV RNA. We identified oligomeric proanthocyanidin with mean degree of polymerization (mDP) around eight as an inhibitor of HCV subgenome expression. We also analyzed cellular proteins that have affinity to the oligomeric proanthocyanidin in HCV replicon cells and identified heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 as one of candidate proteins involved in the proanthocyanidin-mediated inhibition of HCV subgenome expression.  相似文献   

9.
So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.  相似文献   

10.
Treatment of chronic hepatitis C virus (HCV) infection is evolving rapidly with the development of novel direct acting antivirals (DAAs), however viral clearance remains intimately linked to the hepatic innate immune system. Patients demonstrating a high baseline activation of interferon stimulated genes (ISGs), termed interferon refractoriness, are less likely to mount a strong antiviral response and achieve viral clearance when placed on treatment. As a result, suppressor of cytokine signalling (SOCS) 3 and other regulators of the IFN response have been identified as key candidates for the IFN refractory phenotype due to their regulatory role on the IFN response. AXL is a receptor tyrosine kinase that has been identified as a key regulator of interferon (IFN) signalling in myeloid cells of the immune system, but has not been examined in the context of chronic HCV infection. Here, we show that AXL is up-regulated following HCV infection, both in vitro and in vivo and is likely induced by type I/III IFNs and inflammatory signalling pathways. AXL inhibited type IFNα mediated ISG expression resulting in a decrease in its antiviral efficacy against HCV in vitro. Furthermore, patients possessing the favourable IFNL3 rs12979860 genotype associated with treatment response, showed lower AXL expression in the liver and a stronger induction of AXL in the blood, following their first dose of IFN. Together, these data suggest that elevated AXL expression in the liver may mediate an IFN-refractory phenotype characteristic of patients possessing the unfavourable rs12979860 genotype, which is associated with lower rates of viral clearance.  相似文献   

11.
12.
13.
Hepatitis C Virus (HCV) affects 3% of the world’s population and causes serious liver ailments including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is an enveloped RNA virus belonging to the family Flaviviridae. Current treatment is not fully effective and causes adverse side effects. There is no HCV vaccine available. Thus, continued effort is required for developing a vaccine and better therapy. An HCV cell culture system is critical for studying various stages of HCV growth including viral entry, genome replication, packaging, and egress. In the current procedure presented, we used a wild-type intragenotype 2a chimeric virus, FNX-HCV, and a recombinant FNX-Rluc virus carrying a Renilla luciferase reporter gene to study the virus replication. A human hepatoma cell line (Huh-7 based) was used for transfection of in vitro transcribed HCV genomic RNAs. Cell-free culture supernatants, protein lysates and total RNA were harvested at various time points post-transfection to assess HCV growth. HCV genome replication status was evaluated by quantitative RT-PCR and visualizing the presence of HCV double-stranded RNA. The HCV protein expression was verified by Western blot and immunofluorescence assays using antibodies specific for HCV NS3 and NS5A proteins. HCV RNA transfected cells released infectious particles into culture supernatant and the viral titer was measured. Luciferase assays were utilized to assess the replication level and infectivity of reporter HCV. In conclusion, we present various virological assays for characterizing different stages of the HCV replication cycle.  相似文献   

14.
Hypoxia inducible factor 1α (HIF-1α) is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi) block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA) and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA) for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor - eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.  相似文献   

15.
Hepatitis B and C viruses (HBV and HCV, respectively) are different and distinct viruses, but there are striking similarities in their disease potential. Infection by either virus can cause chronic hepatitis, liver cirrhosis, and ultimately, liver cancer, despite the fact that no pathogenetic mechanisms are known which are shared by the two viruses. Our recent studies have suggested that replication of either of these viruses upregulates a cellular protein called serine protease inhibitor Kazal (SPIK). Furthermore, the data have shown that cells containing HBV and HCV are more resistant to serine protease-dependent apoptotic death. Since our previous studies have shown that SPIK is an inhibitor of serine protease-dependent apoptosis, it is hypothesized that the upregulation of SPIK caused by HBV and HCV replication leads to cell resistance to apoptosis. The evasion of apoptotic death by infected cells results in persistent viral replication and constant liver inflammation, which leads to gradual accumulation of genetic changes and eventual development of cancer. These findings suggest a possibility by which HBV and HCV, two very different viruses, can share a common mechanism in provoking liver disease and cancer.Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are serious worldwide health problems, with more than 500 million people believed to be chronically infected with at least one of these viruses (36). HBV is a DNA virus belonging to the Hepadnaviridae family (21), while HCV is an RNA virus belonging to the Flaviviridae family (7). Despite the fact that they are two very different viruses, they share a common pathology in the ability to cause chronic hepatitis, liver cirrhosis, and ultimately, hepatocellular carcinoma (HCC) (34). It remains unclear why these two viruses, which are fundamentally so different, can both lead to similar disease states and the development of HCC.Numerous studies suggest that in chronic viral hepatitis, the host''s immune system is unable to clear infected cells (34). The persistent viral replication further stimulates liver inflammation, and prolonged inflammation and viral persistence result in a gradual accumulation of genetic changes which can subsequently lead to transformation and development of HCC (3, 13). It is possible that part of this failure of the host to clear infected cells results from an inability to induce apoptosis in these cells. For example, persistent HBV/HCV infection suppresses cytotoxic-T-lymphocyte (CTL)-induced apoptosis (3, 4). Apoptosis, or programmed cell death, plays a critical role in embryonic development, immune system function, and the overall maintenance of tissue homeostasis in multicellular organisms. It is also important in the host''s control of viral infection (4). The execution of the apoptotic program has traditionally been considered the result of the activation of a family of proteases known as caspases. Caspase-dependent cell apoptosis (CDCA) usually initiates by activating caspases 8 and 10 through proteolysis of their proenzymes, which further activates the executioner caspases, such as caspase 3 and caspase 7, resulting in the degradation of chromosomal DNA and cell death (28, 29). Recent evidence, however, has suggested that apoptotic cell death can also be promoted and triggered by serine proteases in a caspase-independent manner (5, 6, 39). Serine protease-dependent cell apoptosis (SPDCA) differs from CDCA in that serine proteases, not caspases, are critical to the apoptotic process (1, 6, 39). Interestingly, certain viral infections have been shown to induce SPDCA (27, 39).Failure of the immune-mediated removal of malignant cells through apoptosis may be due to the upregulation of apoptosis inhibitors in these cells (12, 18). We recently demonstrated that SPDCA can be inhibited by a small, 79-amino-acid protein called serine protease inhibitor Kazal (SPIK) (22). SPIK, which is also known as SPINK1, TATI (tumor-associated trypsin inhibitor), and PSTI (pancreas secretory trypsin inhibitor) (8, 24, 38), was first discovered in the pancreas as an inhibitor of autoactivation of trypsinogen (9). The expression of SPIK in normal tissue is limited or inactivated outside the pancreas, but expression of SPIK is elevated in numerous cancers, such as colorectal tumors, renal cell carcinoma, gastric carcinoma, and intrahepatic cholangiocarcinoma (ICC) (16, 19, 24, 31, 40, 41). It remains unknown, however, what role SPIK may play in cancer formation and development. Additionally, overexpression of SPIK was also found in HBV/HCV-infected human livers (32), and an even higher level of expression of SPIK was found in HBV/HCV-associated HCC tissue (19, 31). This implies that SPIK may be closely associated with hepatitis virus infection and development of HCC.Here we show direct evidence that HBV/HCV replication does in fact upregulate expression of the apoptosis inhibitor SPIK, resulting in resistance to SPDCA, which could ultimately lead to the development of chronic hepatitis and liver cancer.  相似文献   

16.
17.
Hepatitis C virus (HCV) replication involves many viral and host factors. Here, we employed a lentivirus-based RNA interference (RNAi) screening approach to search for possible cellular factors. By using a kinase-phosphatase RNAi library and an HCV replicon reporter system, we identified a serine-threonine kinase, Polo-like kinase 1 (Plk1), as a potential host factor regulating HCV replication. Knockdown of Plk1 reduced both HCV RNA replication and nonstructural (NS) protein production in both HCV replicon cells and HCV-infected cells while it did not significantly affect host cellular growth or cell cycle. Overexpression of Plk1 in the knockdown cells rescued HCV replication. Interestingly, the ratio between the hyperphosphorylated form (p58) and the basal phosphorylated form (p56) of NS5A was lower in the Plk1 knockdown cells and Plk1 kinase inhibitor-treated cells than in the control groups. Further studies showed that Plk1 could be immunoprecipitated together with NS5A. Both proteins partially colocalized in the perinuclear region. Furthermore, Plk1 could phosphorylate NS5A to both the p58 and p56 forms in an in vitro assay system; the phosphorylation efficiency was comparable to that of the reported casein kinase. Taken together, this study shows that Plk1 is an NS5A phosphokinase and thereby indirectly regulates HCV RNA replication. Because of the differential effects of Plk1 on HCV replication and host cell growth, Plk1 could potentially serve as a target for anti-HCV therapy.Hepatitis C virus (HCV) is the major causative agent of non-A/non-B hepatitis (26). More than 170 million people, or 3% of the population in the world, are infected with HCV (29). It establishes chronic infection in at least 85% of infected individuals and is associated with liver cirrhosis and hepatocellular carcinoma. Current treatment, which combines polyethylene glycol-interferon (PEG-IFN) and ribavirin, is ineffective in 22% of patients with non-genotype 1 and in 45% of patients with genotype 1 HCV (1, 16, 23, 55). Therefore, identification of new targets for HCV therapy is an important issue, and cellular genes involved in the HCV life cycle may serve as good candidates.HCV is a positive-strand RNA virus and the only known member of Hepacivirus genus in the family Flaviviridae. Its genome has a length of about 9,600 nucleotides coding for a single polyprotein. The long polyprotein is further processed into at least 10 different products, including four structural proteins (core, E1, E2, and p7) and six nonstructural (NS) proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Nonstructural proteins NS3-NS5B are components of the membrane-associated HCV replication complex (8, 13, 36, 45). NS3 is a bifunctional protein containing an N-terminal protease domain and a C-terminal helicase/NTPase domain, and NS4A serves as a cofactor for NS3 protease. NS4B protein is known to induce intracellular membrane changes that probably serve as the site for viral RNA replication (8). NS5A is required for RNA replication, but little is known about its function. NS5B is the RNA-dependent RNA polymerase (reviewed in reference 47).NS5A is phosphorylated on multiple serine and threonine residues and exists in basal phosphorylated (p56) and hyperphosphorylated (p58) forms (49). Increasing evidence suggests that the regulation of NS5A phosphorylation is important for HCV RNA replication. Adaptive mutations or kinase inhibitors, which reduce NS5A hyperphosphorylation, increased the replication of an HCV replicon in cell culture (HCVcc) systems (2, 4, 38). However, when an adaptive replicon with reduced p58 was further treated with the same kinase inhibitor or introduced with a second adaptive mutation, RNA replication was completely blocked (32, 38). Furthermore, the mutations that reduce NS5A hyperphosphorylation and promote RNA replication in cell culture, paradoxically, prevented productive replication in the chimpanzee model (6). These results imply that the tight control of the p58/p56 ratio is important for HCV replication. The detailed mechanism is still not clear, but a clue was provided by the finding of differential association of NS5A phospho-forms with the host vesicle-associated membrane protein-associated protein A (VAP-A) protein, which is an essential molecule for HCV replicase (9, 12). On the other hand, NS5A phosphorylation was recently found to regulate the production of infectious virus (34, 50). Alanine substitutions in the C-terminal domain III of NS5A impaired NS5A phosphorylation, leading to a decrease in NS5A-core protein interaction, disturbance of subcellular localization of NS5A, and disruption of virion production (3, 34, 50). In summary, phosphorylation on NS5A is not only important for HCV RNA replication but also critical for infectious virus production.Since the phosphorylation state of NS5A is correlated with HCV RNA replication and virion production, cellular kinases responsible for NS5A phosphorylation may serve as good candidates for drug targets. Several kinases have been shown to target NS5A in vitro, including casein kinase I (CKI), CKII, MEK1, MKK6, MKK7, AKT, and p70S6K (7, 24). Among these proteins, CKI and CKII are better characterized for NS5A phosphorylation. CKIα has been identified as the target of kinase inhibitors which decrease the hyperphosphorylation of NS5A and was further confirmed as a direct kinase of NS5A (41, 42). CKI requires prephosphorylation of residues near the predicted phosphorylation site in NS5A for effective modification, suggesting that other kinases are also involved in this process (42). CKII has been shown to bind to the C-terminal domain of NS5A and phosphorylate NS5A in vitro (24). Inhibition of CKII with chemical compounds or small interfering RNA (siRNA) did not significantly affect HCV RNA replication but severely disrupted virus production (50).In this study, using lentivirus-based RNA interference (RNAi) screening, we identified a serine/threonine kinase, Polo-like kinase 1 (Plk1), which is involved in HCV replication. Expression of short hairpin RNAs (shRNAs) targeting Plk1 decreased HCV replication and virus production. Moreover, silencing of Plk1 decreased the hyperphosphorylated form of NS5A. In cells treated with a Plk1-specific kinase inhibitor, HCV replication and NS5A hyperphosphorylation were significantly reduced, indicating that Plk1 kinase activity is required for this process. Further studies showed that Plk1 was coimmunoprecipitated and partially colocalized with NS5A, suggesting NS5A as a possible substrate for Plk1. Finally, NS5A is hyperphosphorylated by Plk1 in vitro, supporting the proposition that Plk1 regulates HCV replication through hyperphosphorylation of NS5A.  相似文献   

18.
19.
The hepatitis C virus (HCV) genome contains numerous RNA elements that are required for its replication. Most of the identified RNA structures are located within the 5′ and 3′ untranslated regions (UTRs). One prominent RNA structure, termed the cis-acting replication element (CRE), is located within the NS5B coding region. Mutation of part of the CRE, the 5BSL3.2 stem-loop, impairs HCV RNA replication. This loop has been implicated in a kissing interaction with a complementary stem-loop structure in the 3′ UTR. Although it is clear that this interaction is required for viral replication, the function of the interaction, and its regulation are unknown. In order to gain insight into the CRE function, we isolated cellular proteins that preferentially bind the CRE and identified them using mass spectrometry. This approach identified EWSR1 as a CRE-binding protein. Silencing EWSR1 expression impairs HCV replication and infectious virus production but not translation. While EWRS1 is a shuttling protein that is extensively nuclear in hepatocytes, substantial amounts of EWSR1 localize to the cytosol in HCV-infected cells and colocalize with sites of HCV replication. A subset of EWRS1 translocates into detergent-resistant membrane fractions, which contain the viral replicase proteins, in cells with replicating HCV. EWSR1 directly binds the CRE, and this is dependent on the intact CRE structure. Finally, EWSR1 preferentially interacts with the CRE in the absence of the kissing interaction. This study implicates EWSR1 as a novel modulator of CRE function in HCV replication.  相似文献   

20.
Regulator of calcineurin 1 (RCAN1; also referred as DSCR1 or MCIP1) is located in close proximity to a Down syndrome critical region of human chromosome 21. Although RCAN1 is an endogenous inhibitor of calcineurin signaling that controls lymphocyte activation, apoptosis, heart development, skeletal muscle differentiation, and cardiac function, it is not yet clear whether RCAN1 might be involved in other cellular activities. In this study, we explored the extra-functional roles of RCAN1 by searching for novel RCAN1-binding partners. Using a yeast two-hybrid assay, we found that RCAN1 (RCAN1-1S) interacts with histone deacetylase 3 (HDAC3) in mammalian cells. We also demonstrate that HDAC3 deacetylates RCAN1. In addition, HDAC3 increases RCAN1 protein stability by inhibiting its poly-ubiquitination. Furthermore, HDAC3 promotes RCAN1 nuclear translocation. These data suggest that HDAC3, a new binding regulator of RCAN1, affects the protein stability and intracellular localization of RCAN1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号