首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Generalising the linearisation procedure used by Dirac and later by Lévy-Leblond, we derive the first-order non-relativistic wave equations for particles of spin 1 and spin 3/2 starting from the Schrödinger equation. By the introduction in the momentum of a correction linear in coordinates, we establish the wave equation of the radial harmonic oscillator with spin-orbit coupling.  相似文献   

2.
An algorithm is proposed for studying the symmetry properties of equations used in theoretical and mathematical physics. The application of this algorithm to the free Schrödinger equation permits one to establish that, in addition to the known Galilei symmetry, the free Schrödinger equation possesses also relativistic symmetry in some generalized sense. This property of the free Schrödinger equation provides an extension of the equation into the relativistic domain of the free particle motion under study.  相似文献   

3.
Abstract

We show that the free Schrödinger equation admits Lorentz space-time transformations when corresponding transformations of the ψ-function are nonlocal. Some consequences of this symmetry are discussed.

Dedicated to Wilhelm Fushchych – Inspirer, Mentor, Friend and Pioneer in non–Lie symmetry methods – on the occasion of his sixtieth birthday  相似文献   

4.
We adopt a formulation of the Mach principle that the rest mass of a particle is a measure of it’s long-range collective interactions with all other particles inside the horizon. As a consequence, all particles in the universe form a ‘gravitationally entangled’ statistical ensemble and one can apply the approach of classical statistical mechanics to it. It is shown that both the Schrödinger equation and the Planck constant can be derived within this Machian model of the universe. The appearance of probabilities, complex wave functions, and quantization conditions is related to the discreetness and finiteness of the Machian ensemble.  相似文献   

5.
In the first example containing a long ranged potential, the long range part of the solution is obtained by an iterative Born-series type method. The convergence is illustrated for a case with the long range part of the potential given by C 6/r 6. Accuracies of 1 : 108 are achieved after 8 iterations. The second example iteratively calculates the solution of a non-linear Gross–Pitaevskii equation for condensed Bose atoms contained in a trap at low temperature.  相似文献   

6.
The three-body Schrödinger operator in the space of square integrable functions is found to be a certain extension of operators which generate the exponential unitary group containing a subgroup with nilpotent Lie algebra of length ${\kappa + 1, \kappa = 0, 1, \ldots}$ As a result, the solutions to the three-body Schrödinger equation with decaying potentials are shown to exist in the commutator subalgebras. For the Coulomb three-body system, it turns out that the task is to solve—in these subalgebras—the radial Schrödinger equation in three dimensions with the inverse power potential of the form ${r^{-{\kappa}-1}}$ . As an application to Coulombic system, analytic solutions for some lower bound states are presented. Under conditions pertinent to the three-unit-charge system, obtained solutions, with ${\kappa = 0}$ , are reduced to the well-known eigenvalues of bound states at threshold.  相似文献   

7.
Levinson's theorem for the one-dimensional Schrödinger equation with asymmetric potential which decays at infinity faster thanx –2 is established by theSturm-Liouville theorem. The critical case where the Schrödinger equation hasa finite zero-energy solution is also analyzed. It is demonstrated that the numberof bound states with even (odd) parityn +(n ) is related to the phase shift + (0)[ (0)] of the scattering states with the same parity at zero momentum as + (0)+ /2 =n + and (0) =n for the noncritical case, and + (0) =n + and (0) – /2 =n for the critical case.  相似文献   

8.
Abstract

We prove that two nonlinear generalizations of the nonlinear Schrödinger equation are invariant with respect to a Lie algebra that coincides with the invariance algebra of the Hamilton-Jacobi equation.  相似文献   

9.
We consider the long time behavior of solutions of the d-dimensional linear Boltzmann equation that arises in the weak coupling limit for the Schrödinger equation with a time-dependent random potential. We show that the intermediate mesoscopic time limit satisfies a Fokker–Planck type equation with the wave vector performing a Brownian motion on the (d ? 1)-dimensional sphere of constant energy, as in the case of a time-independent Schrödinger equation. However, the long time limit of the solution with an isotropic initial data satisfies an equation corresponding to the energy being the square root of a Bessel process of dimension d/2.  相似文献   

10.
Abstract

The solution of the three-dimensional free Schrödinger equation due to W.M. Shtelen based on the invariance of this equation under the Lorentz Lie algebra so(1,3) of nonlocal transformations is considered. Various properties of this solution are examined, including its extension to n ≥ 3 spatial dimensions and its time decay; which is shown to be slower than that of the usual solution of this equation. These new solutions are then used to define certain mappings, F n, on L 2(?n) and a number of their properties are studied; in particular, their global smoothing properties are considered. The differences between the behavior of F n and that of analogous mappings constructed from usual solutions of the free Schrödinger equation are discussed.  相似文献   

11.
We prove a dynamical localization in the nonlinear Schrödinger equation with a random potential for times of the order of O(β ?2), where β is the strength of the nonlinearity.  相似文献   

12.
We study the collision of two fast solitons for the nonlinear Schrödinger equation in the presence of a slowly varying external potential. For a high initial relative speed ||v|| of the solitons, we show that, up to times of order ||v|| after the collision, the solitons preserve their shape (in L 2-norm), and the dynamics of the centers of mass of the solitons is approximately determined by the external potential, plus error terms due to radiation damping and the extended nature of the solitons. We remark on how to obtain longer time scales under stronger assumptions on the initial condition and the external potential.  相似文献   

13.
We adapt recent results on instability for non-linear Schrödinger equations to the semi-classical setting. Rather than work with Sobolev spaces we estimate projective instability in terms of the small constant, h, appearing in the equation. Our motivation comes from the Gross-Pitaevski equation used in the study of Bose-Einstein condensation.  相似文献   

14.
We give two formulas for the lowest point in the spectrum of the Schrödinger operatorL=–(d/dt)p(d/dt)+q, where the coefficientsp andq are real-valued, bounded, uniformly continuous functions on the real line. We determine whether or not is an eigenvalue forL in terms of a set of probability measures on the maximal ideal space of theC *-algebra generated by the translations ofp andq.Research supported in part by the National Science Foundation under Grant DMS-910496  相似文献   

15.
16.
We consider the focusing (attractive) nonlinear Schrödinger (NLS) equation with an external, symmetric potential which vanishes at infinity and supports a linear bound state. We prove that the symmetric, nonlinear ground states must undergo a symmetry breaking bifurcation if the potential has a non-degenerate local maxima at zero. Under a generic assumption we show that the bifurcation is either a subcritical or supercritical pitchfork. In the particular case of double-well potentials with large separation, the power of nonlinearity determines the subcritical or supercritical character of the bifurcation. The results are obtained from a careful analysis of the spectral properties of the ground states at both small and large values for the corresponding eigenvalue parameter.  相似文献   

17.
We propose some nonlinear Schrödinger equations by adding some higher order terms to the Lagrangian density of Schrödinger field, and obtain the Gross-Pitaevskii (GP) equation and the logarithmic form equation naturally. In addition, we prove the coefficient of nonlinear term is very small, i.e., the nonlinearity of Schrödinger equation is weak.  相似文献   

18.
We consider the simple case of a nonrelativistic charged harmonic oscillator in one dimension, to investigate how to take into account the radiation reaction and vacuum fluctuation forces within the Schrödinger equation. The effects of both zero-point and thermal classical electromagnetic vacuum fields, characteristic of stochastic electrodynamics, are separately considered. Our study confirms that the zero-point electromagnetic fluctuations are dynamically related to the momentum operator p=?i ? ?/? x used in the Schrödinger equation.  相似文献   

19.
20.
On the Schrödinger equation and the eigenvalue problem   总被引:1,自引:0,他引:1  
If k is thek th eigenvalue for the Dirichlet boundary problem on a bounded domain in n , H. Weyl's asymptotic formula asserts that , hence . We prove that for any domain and for all . A simple proof for the upper bound of the number of eigenvalues less than or equal to - for the operator –V(x) defined on n (n3) in terms of is also provided.Research partially supported by a Sloan Fellowship and NSF Grant No. 81-07911-A1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号