首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Single crystals of a new ternary nitride, Ba5Si2N6, were synthesized by slow cooling from 750°C using a starting mixture of Ba, Si, Na and NaN3, where Na and NaN3 were a flux and a nitrogen source respectively. It crystallizes with orthorhombic symmetry: space group P212121 (No. 19), A = 6.159, B = 10.305, C = 15.292 Å, and Z = 4. The crystal structure was determined from single-crystal data and refined to R1 = 0.0495 for all 1637 observed reflections and 89 variables. A pair of SiN4 tetrahedra contained in the structure forms a nitridometallate anion of [Si2N6]10 by edge sharing.  相似文献   

2.
A new ternary compound of composition LaMg2Ni has been found and investigated with respect to structure and hydrogenation properties. It crystallizes with the orthorhombic MgAl2Cu type structure (space group Cmcm, a=4.2266(6), b=10.303(1), c=8.360(1) Å; V=364.0(1) Å3; Z=4) and absorbs hydrogen near ambient conditions (<200 °C, <8 bar) thereby forming the quaternary metal hydride LaMg2NiH7. Neutron powder diffraction on the deuteride revealed a monoclinic distorted metal atom substructure (LaMg2NiD7: space group P21/c, a=13.9789(7), b=4.7026(2), c=16.0251(8) Å; β=125.240(3)°, V=860.39(8) Å3; Z=8) that contains two symmetry independent tetrahedral [NiD4]4− complexes with Ni–D bond lengths in the range 1.49–1.64 Å, and six Danions in tetrahedral metal configuration with bond distances in the ranges 1.82–2.65 Å (Mg) and 2.33–2.59 Å (La). The compound constitutes a link between metallic ‘interstitial’ hydrides and non-metallic ‘complex’ metal hydrides.  相似文献   

3.
LiMg2RuH7 and its deuteride were synthesized by sintering mixtures of LiH, magnesium and ruthenium powders at 500–550 °C and a hydrogen (deuterium) pressure of 120–155 bar, and characterized by X-ray and neutron powder diffraction. The yellow powder crystallizes with hexagonal symmetry (space group, P63/mmc; hydride - A = 4.7060(1) Å, C = 10.6960(2) Å; deuteride - A = 4.6998(1) Å, C = 10.6674(3) Å). The structure is an ordered substitution variant of Mg3ReH7. It contains a nearly regular octahedral 18-electron [Ru(II)D6]4− complex with bond distances [Ru-6D1] = 1.704(7) Å, and a deuteride anion D coordinated in a trigonal bipyramidal configuration by two close magnesium and three distant lithium cations with bond distances [D2-2Mg] = 1.852(6) Å and [D2−3Li] = 2.7134(1) Å respectively.  相似文献   

4.
The crystal structure of iron(III) selenate(IV) trihydrate, Fe2(SeO3)3 • 3H2O, space group R3c, a = 9.360(1) Å, C = 20.297(2) Å, V = 1539.98 Å3, Z = 6, was determined by single-crytal X-ray diffraction methods, 926 unique data, measured up to 2θ = 70° (Mo K radiation); R, R(I)w = 0.034, 0.088. Fe2(SeO3)3 • 3H2O is isotypic with the analogues Al, Ga and Cr compounds and was synthesized under moderate hydrothermal conditions.  相似文献   

5.
The crystal structure of the compound Sm4Pd4Si3 was determined by the single-crystal method (KM-4 automatic diffractometer, Mo K radiation. Sm4Pd4Si4 has the monoclinic Nd4Rh4Ge, type structure: space C2/c, mC44 (No. 15). a = 20.693(6), B = 5.584(1), C = 7.699(2) Å, β = 109.48(3)°, V = 838 Å, Z = 4, μ - 36.23 mm1, R =F = 0.0537, R F = 0.0435 for 1652 unique reflections. The coordination numbers of samarium atoms are 17 and 18. For palladium and silicon atoms icosahedra and trigonal prisms with additional atoms are typical as coordination polyhedra. The structure of Sm4Pd4Si4 is composed of fragments of the YPd2Si and Y1Rh2Si2 structure in a ratio 1:1.  相似文献   

6.
Structural studies were performed for the ternary RIr3B2 compounds (R=Ce and Pr) from as cast samples. The crystal structure of the ternary boride CeIr3B2 (CeCo3B2 structure type, space group P6/mmm, a=5.520(3) Å, c=3.066(2) Å, Z=1, V=80.91 Å3, ρx=15.154 g cm−3) was refined to R1=0.0470, wR2=0.1240 from single-crystal X-ray diffraction data. The new ternary boride PrIr3B2 was found to be isostructural with the CeIr3B2 compound. Its lattice parameters a=5.5105(2) Å, c=3.1031(1) Å were obtained from a Rietveld refinement of X-ray powder diffraction data.  相似文献   

7.
The new compound Li2VGeO5 with a layered structure has been synthesized at 580 °C via the hydrothermal method. The compound crystallizes in the space group P4/n of the tetragonal system with two formula units in a cell of dimensions a=6.5187(9) Å, c=4.5092(9) Å (T=298 K), V=191.61(5) Å3. The structure is composed of layers made of repeating [(VO5)(GeO4)]1− units. Li+ ions reside between the layers. The magnetic susceptibility data show an antiferromagnetic coupling below 5 K with C=0.47 emu K mol−1, and θ=−13 K with μeff=1.89μB for each Li2VGeO5 unit.  相似文献   

8.
Two ternary alkali earth silver bismuthides, CaAgBi and BaAg1.837Bi2, have been synthesized by solid-state reactions of the corresponding metals in welded Nb tubes at high temperature. Their structures have been established by single-crystal X-ray diffraction studies. CaAgBi crystallizes in the hexagonal space group P63mc (No.186) with cell parameters of a = b = 4.8113(4) Å, c = 7.8273(9) Å, V = 156.92(3) Å3, and Z = 2. BaAg1.837Bi2 belongs to tetragonal space group P4/nmm (No.129) with cell parameters of a = b = 4.9202(2) Å, c = 11.628(1) Å, V = 281.50(3) Å3, and Z = 2. The structure of CaAgBi is of the LiGaGe type, and features a three-dimensional four-connected (3D4C) anionic network with Ca2+ encapsulated in the channels formed by [Ag3Bi3] six-membered rings. BaAg1.837Bi2 is isostructural with CaBe2Ge2, a variant of the tetragonal ThCr2Si2-type structure. Its structure exhibits a three-dimensional anionic network built of (0 0 1) and (0 0 2) puckered [Ag2Bi2] layers interconnected via additional Ag–Bi bonds along the c-axis. BaAg1.837Bi2 is metallic based on band structure calculations.  相似文献   

9.
The structure of Li3Cu2O4 was solved from X-ray powder diffraction data and refined from a multiphase specimen using the Rietveld method. The cuprate crystallizes in C2/m with Z = 2. The compound has a small homogeneity range. Typical parameters are a = 9.946(5) Å, B= 2.778(2) Å, C = 7.260(5) Å and β = 119.10(2)°. The structure may be described as an ordered intergrowth of slabs of Li2CuO2 and hypothetical LiCuO2 of NaCuO2 type. The formula suggests a copper(II, III) mixture, but there is only one crystallographic copper site which implies a more appropriate formulation as Li3+[Cu(II)O2]23/2 with parallel strands of edge-coupled CuO4 units running along the b axis.  相似文献   

10.
Single crystals of RbBa3Ca4Cu3V7O28 were prepared above the melting point of the reaction mixture. It crystallizes with hexagonal symmetry, space group C6V4-P63mc, a 11.1751, c 12.434 Å, Z = 2. RbBa3Ca4Cu3V7O28 is the second member of a new structure type of the copper-oxovanadates. Ba2+ shows an unusual 12-fold coordination. The two calcium positions are coordinated by trigonal prisms and octahedra respectively. The copper coordination is characterized by a stretched square pyramid. The Cu2+ ions are outside the centre nearly in plane of the pyramids.

Zusammenfassung

Einkristalle von RbBa3Ca4Cu3V7O28 wurden oberhalb des Schmelzpunktes der Reaktionsmischung erhalten. Die Verbindung kristallisiert hexagonal, Raumgruppe C6V4-P63mc, a 11.1751, c 12.434 Å, Z = 2. RbBa3Ca4Cu3V7O28 ist das zweite Beispiel für einen neuen Strukturtyp der Kupfer-Oxovanadate, mit 12-fach koordinierten Ba2+ -Ionen. Die zwei Calciumpositionen sind trigonal prismatisch bzw. oktaedrisch koordiniert. Die Koordination der Cu2+-Ionen ist durch eine gestreckte Pyramide charakterisiert. Cu2+ ist auβerhalb des Polyederzentrums nahezu in der quadratischen Fläche der Pyramide angeordnet.  相似文献   


11.
Two novel polyphosphides, NaP5 and CeP5, were prepared in a BN crucible by the reaction of elemental components under a high pressure of 3 GPa at 800–950 °C. The X-ray structural analysis showed that NaP5 crystallizes in an orthorhombic space group Pnma with a=10.993(2) Å, b=6.524(1) Å, c=6.903(1) Å, Z=4 and CeP5 in the monoclinic group P21/m with a=4.9143(5) Å, b=9.6226(8) Å, c=5.5152(4) Å, β=104.303(6)°, Z=2. The crystal structure of NaP5 consists of a three-dimensional framework 3[P5]1− constructed by P---P bonds among four crystallographically inequivalent phosphorus sites, with large channels hosting the sodium cations, while CeP5 is a layered compound containing 2[P5]3− polyanionic layers that are separated by Ce3+ ions. NaP5 exhibits the diamagnetic behavior, while the temperature-dependent magnetic susceptibility of CeP5 essentially follows the Curie–Weiss law.  相似文献   

12.
A new ternary compound Ce(Au,Sb)2, with a homogeneity range has been observed from X-ray powder diffraction of as cast alloys, a = 4.743–4.712 Å, c = 3.567–3.768 Å. Its crystal structure was investigated by X-ray diffraction from Ce(Au1−xSbx)2 (x = 0.266) single crystal: CAD-4 automatic diffractometer, Mo K radiation, a = 4.7256(6) Å, c = 3.6711(6) Å, P6/mmm space group, V = 70.997(17) Å3, Z = 1, ρ = 10.732 Mg/m3, μ = 76.369 mm−1, R1 = 0.0415, wR2 = 0.0793 for 99 reflections with I > 2σ(I0). The coordination polyhedron of X (X = 0.734Au + 0.266Sb) atom is a full-capped trigonal prism [XCe6X3X2]. Ce atom is coordinated by 14 atoms: [CeX12Ce2]. The compound is isotypic with UHg2 structure, a deformation derivative of AlB2 structure type. It forms isostructural compounds with La and Pr.  相似文献   

13.
A single-crystal X-ray structural investigation of [Tb(C5H5)2Br]2 revealed the [Sc(C5H5)2Cl]2-type structure, space group P21/c, with a = 1407.6(2) pm, b = 1644.7(2) pm, c = 1370.6(9) pm, β = 93.46(3)°, V = 3167(2) × 106 pm3, Dc = 2.322 g cm−3 and Z = 6 dimers (R = 0.036 for 4627 reflections with I > 3σ(I)). The metal centres have the pseudosymmetry C2v. Magnetic susceptibility data show Curie-Weiss behaviour between 213 and 6 K with θp = −4.5(3) K and a magnetic moment μ = 9.8(1) μB close to the Tb3+ free-ion value (9.72 μB). Below 6 K, deviations from Curie-Weiss behaviour are observed, and at 5.3 K a maximum in the susceptibility is detected which may be caused by intradimer antiferromagnetic spin coupling. The magnetic properties are compared with the prediction of various models, starting from cubic crystal fields and isotropic intramolecular exchange interactions, followed by extension to lower crystal field symmetry (orthorhombic) and anisotropic contributions to the spin coupling. However, a reasonable agreement between the measured and calculated data was not obtained. As in [Gd(C5H5)2Br]2, the low-temperature behaviour is governed by effects which cannot be described by spin coupling models in the generally accepted form.  相似文献   

14.
The crystal structure of the ternary boride Y2Pd14B5, space group I41/amd, a=8.484(2) Å, c=16.490(3) Å, V=1186.98 Å3, Z=4, was refined down to R=0.0475, wR2=0.1276 from single crystal X-ray diffraction data. Two types of coordination for boron atoms were observed: the coordination sphere for the B1 atom is a trigonal prism with one additional atom; the B2 atom has only four neighboring atoms which form a square. No boron–boron contact was observed. Analysis of the Y2Pd14B5 crystal structure shows the existence of a correlation between this structure and the Sc4Ni29B10 structure type. Magnetization and AC susceptibility measurements indicate that there is no superconducting or magnetic transition in Y2Pd14B5 down to 2 K.  相似文献   

15.
The new compound TlCuTiTe3 has been synthesized from Tl6Te4 and the corresponding elements and characterized by single-crystal X-ray diffraction methods. TlCuTiTe3 crystallizes in the space group C2b2P21/m of the monoclinic system with two formula units in a cell of dimensions a = 8.409(8) Å, B = 3.956(3) Å, C = 10.261(8) Å, β = 111.56(4)°, V = 317.5(4) Å3 (T = 115 K). The two-dimensional structure comprises slabs of alternating pairs of Ti octahedra and Cu tetrahedra. The slabs are separated by Tl′ cations coordinated to Te3 anions in a monocapped trigonal prismatic fashion. Whereas the structure of the individual slabs in TlCuTiTe4, is strikingly similar to those found in the related materials NaCuTiS3, NaCuZrSe3, and NaCuZrTe3, the packing of the slabs is different. Two-probe resistivity measurements indicate that TlCuTiTe3 is a semiconductor.  相似文献   

16.
Light yellow single crystals of potassium nitridoditungstate (K6W2N4O3) and pale single crystals of potassium digermanate (K6Ge2O7) were obtained by the reaction of the metal oxides WO3 (molar ratio, 1 : 15.7) or GeO2 (molar ratio, 1 : 2) in alkali metal amide melts in an autoclave at 530–600 °C for 6–8 days. Colourless single crystals of rubidium digermanate (Rb6Ge2O7) were prepared by the reaction of GeO2 with rubidium amide (molar ratio, 1 : 2) in ammonia at 350 °C in a high-pressure autoclave (H. Jacobs and D. Schmidt, in E. Kaldis (ed.), High-pressure Ammonolysis in Solid State Chemistry, Current Topics in Materials Science, Vol. 8, North Holland, Amsterdam, 1981, p. 379) (p(NH3) = 5.5 kbar) for 10 days. In all three cases other nitrogen-containing products were present.

The structures of the title compounds were determined on the basis of single-crystal data. They are isotypic or structurally closely related to each other: K6W2N4O3: P21/n, a = 6.720(2) Å, b = 9.473(1) Å, c = 9.581(2) Å, β = 91.99(2)°, Z = 2, R/Rw = 0.040/0.048, N(I) > 3σ(I) 2057, N(Var.) = 71. K6Ge2O7: Pn, a = 6.529(2) Å, b = 9.079(4) Å, c = 9.162(6)Å, β = 91.85(4)°, Z = 2, R/Rw = 0.022/0.024, N(I) 3σ(I) = 1486, N(Var.) = 135. Rb6Ge2O7: P21/n, a = 6.839(4) Å, b = 9.437(6) Å, c = 9.460(6) Å, β = 91.53(5)°, Z = 2, R/Rw = 0.061/0.074, N(I) 3σ(I) = 1055, N(Var.) = 71.  相似文献   


17.
Two polymorphs (I and II) of Ba3Sn2P4 have been found in the same preparative batch. Both compounds crystallize in the centrosymmetric monoclinic space group P21/c (#14, a = 7.8669(2) Å, b = 19.2378(5) Å, c = 7.8472(2) Å, β = 112.77(1)°, V = 1095.06(5) Å3, Z = 4, and R/wR = 0.0303/0.0710 for I; a = 7.8771(3) Å, b = 19.4099(7) Å, c = 7.7040(3) Å, β = 112.44(1)°, V = 1088.67(7) Å3, Z = 4, and R/wR = 0.0224/0.0415 for II). Both structures consist of one-dimensional chains separated by Ba2+ cations. The isolated chain consists of condensed ethane-like [Sn2P6] units. In polymorphs I and II, the condensation and connectivity of the [Sn2P6] units are quite different. While [Sn2P6] units form four- and six-membered rings in I, they form the five-membered rings in II. The electronic structure calculations indicate that semiconducting behavior is expected for both compounds.  相似文献   

18.
Single crystals of KCr0.8Al0.2Mo2O8 were prepared and investigated by the X-ray diffractometer technique. It shows a structure type related to trigonal KAIMo2O8, monoclinic NaCrMo2O8 or orthorhombic KInMo2O8, space group C2h6C2/c; a=17.445 Å, b=5.649 Å, c=8.997 Å, β=119.37°; Z=4. KCr0.8Al0.2Mo2O8 is characterized by isolated MoO4 tetrahedra, isolated (Cr/Al)O6 octahedra and a distorted square antiprism around K+. The crystal structure is discussed with respect to those of related compounds.

Zusammenfassung

Einkristalle von KCr0.8Al0.2Mo2O8 wurden synthetisiert und mit Vierkreisdiffraktometertechnik röntgenographisch untersucht. Sie zeigen einen mit trigonal-KA1Mo2O8, monoklin-NaCrMo2O8 oder orthorhombisch-KlnMo2O8 verwandten Strukturtyp, Raumgruppe C2h6C2/c; a=17,445 Å, b=5,649 Å, c=8,997 Å, β=119,37°; Z=4. KCr0.8Al0.2Mo2O8 zeichnet sich durch isolierte MoO4-Tetraeder, isolierte (Cr/Al)O6-Oktaeder und ein verzerrtes quadratisches Antiprisma um K+ aus. Die Kristallstruktur wird mit solchen verwandter Verbindungen diskutiert.  相似文献   


19.
The phase relations in the ternary system Au---Co---S have been studied by powder X-ray diffraction, metallography, electron microprobe analysis, and thermal analysis. The condensed phases occurring, tie-lines and tie-triangles are presented for an isothermal section of the phase diagram at 380°C. A hitherto unknown genuine ternary phase AuCo2(1−a)Sn4 is found, with 0.167 u 0.180, and as indicated by the formula, the non-stoichiometry is of the subtractional kind (confirmed by density measurements). The unit cell is monoclinic (space group C2/m) with a = 1260.3(3), B = 421.3(1), C = 522.9(1) pm and β = 104.62(2)° for u = 0.167. Au in 2a: (0.833) Co, Sn(I) and Sn(II) in 4i with x = 0.2116(2), Z = 0.3331(5) for Co, x = 0.41759(9), Z = 0.6493(2) for Sn(I) and x = 0.18489(9), Z = 0.8142(2) for Sn(II). The structure of AuCo2(1−a)Sn4 is of the Ni3−xSn4 type and its atomic arrangement is discussed in relation to that of the prototype. AuCo2(1−a)Sn4 behaves as a virtually ideal Curie paramagnet with μp = 1.191(3) μu per Co atom.  相似文献   

20.
Ternary R3Pd4Ge4 samples (R=Nd, Eu, Er) were investigated by means of X-ray single crystal (four circle diffractometer Philips PW1100, MoK radiation) and powder diffraction (MX Labo diffractometer, CuK radiation). The Er3Pd3.68(1)Ge4 compound belongs to the Gd3Cu4Ge4 structure type, space group Immm, a=4.220(2) Å, b=6.843(2) Å, c=14.078(3) Å, R1=0.0484 for 598 reflections with Fo>4σ(Fo) from X-ray single crystal diffraction data. No ternary R3Pd4Ge4 compound when R is Nd or Eu was observed. The Nd and Eu containing samples appeared to be multiphase. Ternary phases observed in the Nd3Pd4Ge4 and Eu3Pd4Ge4 alloys and their crystallographic characteristics are the following: NdPd2Ge2, CeGa2Al2 structure type, space group I4/mmm, a=4.3010(2) Å, c=10.0633(2) Å (X-ray powder diffraction data); NdPd0.6Ge1.4, AlB2 structure type, space group P6/mmm, a=4.2305(2) Å, c=4.1723(2) Å (X-ray powder diffraction data); Nd(Pd0.464(1)Ge0.536(1))2, KHg2 structure type, space group Imma, a=4.469(2) Å, b=7.214(2) Å, c=7.651(3) Å, R1=0.0402 for 189 reflections with Fo>4σ(Fo) (X-ray single crystal diffraction data); Eu(Pd,Ge)2, AlB2 structure type, space group P6/mmm, a=4.311(2) Å, c=4.235(2) Å; EuPdGe, EuNiGe structure type, space group P21/c, and ternary compound with unknown structure (X-ray powder diffraction data).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号