首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于大肠杆菌的CellSense生物传感器毒性分析性能研究   总被引:1,自引:3,他引:1  
采用聚碳酸酯膜直接固定法制备并优化了大肠杆菌(E.coli Top10)CellSense生物传感器微生物电极,探讨了其在重金属和有机污染物生物急性毒性分析中的应用性能.结果表明,基于对数生长后期和稳定期E.coli微生物电极的CellSense生物传感器具有良好的毒性分析性能,基于衰减期E.coli菌株的CellSense生物传感器毒性分析的稳定性和灵敏性降低;CellSense生物传感器测试得Hg2+、Cu2+、Zn2+、邻氯苯酚和对硝基苯酚对E.coli的EC50分别为0.6、3.1、5.8、180和94 μg/mL,制备的E.coli微生物电极在冰箱中4℃保存2个月,仍能很好地满足毒性分析的需要.  相似文献   

2.
检测重金属离子的酶膜生物传感器的构建   总被引:2,自引:0,他引:2  
基于重金属对脲酶的特异性抑制作用,研制了可测定重金属离子的电位型酶膜生物传感器。论文考察了脲酶浓度、戊二醛浓度、温度和固定化时间等因素对电位响应的影响,获得了最佳的酶固定化条件,即酶浓度为0.8mg/mL,戊二醛为2.5%,温度为28℃,固定化时间为2h时酶固定化效果最好。同时还初步研究了该生物传感器的响应性能和再生能力。  相似文献   

3.
常见重金属对费氏弧菌的生物毒性研究   总被引:1,自引:0,他引:1  
以费氏弧菌作为毒性测试物种,研究Hg2+、Pb2+、Cu2+、Cd2+、Zn2+、Cr6+对费氏弧菌的生物毒性.同时,对相对发光强度和金属离子浓度进行线性回归后计算了EC50值(半数效应浓度值),并比较了该菌种对各金属化合物的敏感度差异.结果表明,发光菌的相对发光强度均与重金属离子浓度呈负相关,线性相关系数为0.8764~0.9730.Hg2+、Pb2+、Cu2+、Cd2+、Zn2+、Cr6+对费氏弧菌的EC50分别为0.045、0.181、0.300、0.117、0.614、23.000 mg/L,毒性大小依次为Hg2+ >Cd2+ >Pb2+ >Cu2+ >Zn2+ >Cr6+,可见Hg2+对费氏弧菌的毒性最大,但该发光菌对Cr6+的敏感性较小.  相似文献   

4.
重金属及类金属元素是水质中重要的毒性指标,通过开展这些元素单因子及多因子复合与发光细菌生物毒性剂量效应的分析实验,研究不同重金属对发光细菌的毒性影响大小.单因子评价采用计算测量浓度和相对发光度的相关性曲线,根据EC50来分类毒性物质的毒性大小,结果显示毒性从大至小依次为汞、砷、铅、镉.多因子复合评价采用四元五水平回归设计的方式,应用数据统计软件进行数据处理和分析,结果显示砷、镉、汞、铅四元复合时,元素砷对相对发光度影响的主因子效应明显,即砷为主效因子.可以看出在四种元素中,元素砷无论是单因素还是复合因素对发光细菌均有很大的毒性.  相似文献   

5.
水环境中重金属的生物毒性预测模型   总被引:11,自引:0,他引:11  
简要介绍了近年来发展的几种金属生物毒性预测模型,如FIAM、GSIM和BLM等模型。金属与生物有效性和毒性之间的关系,是制定金属的水质标准的依据,随着对金属形态及其生物有效性和毒性关系研究的深入,产生了很多的机理描述模型。描述金属与生物作用的现存模型有多种,分别从多种角度解释了环境因素对金属形态分布及其生物毒性的影响,各模型在一定程度上可给出重金属的生物毒性信息,但都存在缺陷,不能完全替代毒性实验。建立合理的金属毒性预测模型,为建新的水质标准提供依据,正是国际环境界研究的热点。  相似文献   

6.
采用基于大肠杆菌(E.coli)的CellSense生物传感器,对上海某垃圾填埋场渗滤液处理系统垃圾渗滤液原液(1号)、兼性塘(2号)、曝气氧化塘(3号)、矿化垃圾生物床(4号)和FeC内电解(5号)各处理单元的水质毒性进行跟踪分析.结果表明,在该垃圾渗滤液的处理过程中,由于渗滤液的基质作用和难降解有机物生成的毒性中间产物等的影响,处理工艺中部分单元的水质毒性出现升高现象.CellSense生物传感器分析得上述1~5号单元的水质综合毒性分别为90%(EC10)、80%(EC30)、60%(EC50)、80%(EC50)和2%(EC50),毒性分析结果与对应的COD和氨氮等指标无明显相关性.  相似文献   

7.
磺胺喹噁啉(Sulfaquinoxaline,SQX)作为一种磺胺类抗生素,广泛用于禽畜球虫病防治,易在环境中残留从而造成环境污染,对其降解研究较少.本研究通过微生物燃料电池(Microbial fuel cells,MFCs),以10 mg·L-1 SQX和乙酸钠为底物研究SQX降解特性、电化学性能、产物生物毒性及菌群结构.结果表明,SQX降解率随着乙酸钠浓度的升高先增大后减小,其中SQX与TOC在10 d内最大降解率分别为87.1%和94.0%;MFC体系的最大功率密度和输出电压分别为309.8 mW·m-2和0.702 V;大肠杆菌和青海弧菌Q67毒性实验结果表明,SQX经MFC处理后可有效降低生物毒性;通过LC-TOF/MS分析,SQX生物降解过程中的主要中间产物,推测出羟基化反应、磺酰胺键断裂、吡嗪环C-N键断裂、水解反应、分子重排等降解路径;微生物群落分析表明,MFC阳极体系中TerrimonasAquamicrobiumThiobacillus等菌属与SQX生物降解相关.  相似文献   

8.
影响土壤重金属生物毒性的若干因子   总被引:6,自引:0,他引:6  
本文应用发光细菌法探讨了土壤类型、粘土矿物、无定形金属氧化物、吸附剂对重金属纯溶液以及重金属污染土壤的降毒效应.红壤、砖红壤对Cu、Cd、Pb呈现负的降毒效应,而对As具有明显的降毒作用.黑土、黄棕壤对供试阳离子金属具有明显的降毒效应,对As降毒却不明显.试验证明粘土矿物及其组成是影响土壤重金属毒性的最基本因素.无定形氧化锰对供试阳离子金属的降毒能力大于无定形氧化铁,对As的效应二者则相反.不同吸附剂对Cu、Cd、Pb呈现基本相同的降毒顺序,即炉烟灰>活性炭>泥炭>干活性污泥,不同配比吸附剂对红壤添加性阳离子和东乡铜矿污染土壤均具有明显的降毒作用.添加吸附剂的东乡铜矿污染土壤随着土壤溶液毒性的消除,随之也消除或减轻了其对水稻种芽的急性毒害.  相似文献   

9.
沉积物中重金属生物毒性评价的研究进展   总被引:26,自引:0,他引:26  
根据最新的文献综述了国际上沉积物中重金属毒性评价的研究进展。介绍了沉积物中重金属的主要结合相、影响沉积物中重金属生物毒性的因素和沉积物重金属生物毒性的评价方法等  相似文献   

10.
基于枯草芽孢杆菌微生物传感器的毒性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
采用枯草芽孢杆菌(Bacillus subtilis)为指示生物的微生物传感器毒性分析系统,对重金属(Hg2+、Cu2+、Zn2+、Cr6+、Cd2+、Pb2+和Co2+)、有机污染物[邻氯苯酚(2-CP)、2,4-二氯酚(2,4-DCP)、邻硝基酚(2-NP)、对硝基酚(4-NP)、四环素和十二烷基苯磺酸钠]及石油废水等的生物急性毒性进行分析.结果表明,对数生长后期和稳定期的Bacillussubtilis微生物传感器具有良好的毒性分析性能,Cd2+、Zn2+、Cr6+、Cu2+、Hg2+、Pb2+对Bacillus subtilis的EC50分别为47.3,10.9,14.0,2.6,0.8,100.1mg/L,Co2+的EC30为56.6mg/L,2-CP、2,4-DCP、2-NP、4-NP、四环素和十二烷基苯磺酸钠的EC50分别为559.6,450.8,588.5,487.0,121.3,558.9mg/L,该微生物传感器能真实反映石油废水的毒性情况.  相似文献   

11.
低成本单室微生物燃料电池型BOD传感器的研制   总被引:1,自引:0,他引:1  
吴锋  刘志  周顺桂  王跃强  黄赛花 《环境科学》2009,30(10):3099-3103
生化需氧量(biochemical oxygen demand,BOD)是表征有机物污染程度的综合性指标,传统的检测方法为5 d 20℃培养法,费时费力,不宜现场实时监测.以MnO2代替金属铂作阴极催化剂、以阳离子交换膜代替昂贵的质子交换膜,构建单室微生物燃料电池(microbial fuel cell)型BOD传感器,考察外接电阻、阳极液pH值、检测时间和清洗时间对检测效果的影响,并用该传感器检测实际水样BOD值,与传统BOD5值进行比较.结果表明:①以廉价MnO2为阴极催化剂,阳离子交换膜为隔膜,构建的单室MFC型BOD传感器成本低,结构简单,操作方便,可用于BOD的在线检测;②该BOD传感器的适宜运行条件为样品pH7.0,外接电阻12 kΩ,检测时间2 h,清洗时间2~10 min;③实际水样检测结果显示,传感器最低检出限为0.2 mg/L,测量线性范围为BOD浓度5~50 mg/L,最佳测定范围为BOD浓度20~40 mg/L,精确度为0.33%,标准曲线线性相关系数达0.999 2,与BOD5比较,相对误差在4.0%以内.  相似文献   

12.
在石油资源日趋紧张以及环境恶化日趋严重的今天,微生物燃料电池(MFC)因其可同时实现污水处理和能源回收而受到广泛关注。微藻技术与MFC技术结合产生的微藻型MFC系统得到证实并随之兴起,其中尤以微藻生物阴极型MFC因可实现污水处理、零碳排放、CO2捕捉、太阳能捕获及电能、生物柴油、藻体残渣有价回收等多重功能,成为研究热点。文章根据其中微藻所起的不同作用将微藻型MFC系统分成三类,在参阅大量文献的基础上进行了全面综述,并由此对构建高效微藻生物阴极型MFC进行了探讨,提出了计算机辅助菌种选择技术等相关设想,最后对微藻型MFC的发展提出了展望。  相似文献   

13.
牛粪混合液微生物燃料电池长期运行稳定性研究   总被引:4,自引:1,他引:4  
焦燕  张国栋  赵庆良 《环境科学》2014,35(5):1981-1987
长期运行稳定性是微生物燃料电池(microbial fuel cells,MFCs)技术的一项重要特征,是其能否走向实际应用的关键.生物阴极MFC利用牛粪产电的长期运行特征的研究表明,该MFC可长期、高效、稳定地产电.在100Ω外电阻下,171 d的运行期内,电池功率密度平均为6.77 W·m-3±2.11 W·m-3.第70 d的电池开路电压、内阻、最高功率密度分别为0.874 V、22.1Ω和14.1 W·m-3.随着运行时间延长,每30 d的总化学需氧量(total chemical oxygen demand,TCOD)去除量不断递减,而库仑效率(Coulomb efficiency,CE)不断递增,在121~150 d,CE可达17.5%±3.3%.阳极微生物群落结构分析表明,Proteobacteria(45%)、Bacteroidetes(22%)、Firmicutes(17%)、Actinobacteria(11%)在阳极生物膜中占有优势地位.Clostridium、Cellulomonas等已被证明具有产电能力或纤维素降解能力的细菌是阳极生物膜中的关键功能种群.  相似文献   

14.
好氧生物阴极型微生物燃料电池的同时硝化和产电的研究   总被引:3,自引:0,他引:3  
谢珊  陈阳  梁鹏  黄霞 《环境科学》2010,31(7):1601-1606
在两室型微生物燃料电池的阴极室接种硝化菌实现了同时硝化和产电.硝化过程和产电过程在同一区域实现,不仅能够充分利用曝气的溶解氧,节省曝气能源消耗,而且硝化过程产生的额外的质子,有效地避免了产电过程所造成的阴极pH值升高.运行稳定期间MFC的最大电流和最大功率密度分别为47mA和45.50W/m3,当进水氨氮浓度为153.4mg/L时,硝化速率为5.98mg/(L·d).硝化菌会与产电菌竞争溶解氧,但当溶解氧浓度控制在3.5~5.0mg/L时,硝化过程未对产电产生明显影响.无缓冲溶液的条件下,加入氨氮时的阴极电势比未加入氨氮时的阴极电势高124mV,且阴极电势变化的阶段与氨氮降解的过程是一一对应的.H+离子的理论计算表明,硝化过程产生的H+离子(8.14×10-3mol)与产电过程消耗H+离子(8.54×10-3mol)数量相当,证实了硝化作用中产生的H+离子能够补偿阴极室由于产电造成的H+离子的消耗,维持系统pH值的稳定.  相似文献   

15.
用高浓度对苯二甲酸溶液产电的微生物燃料电池   总被引:3,自引:1,他引:3  
以高浓度对苯二甲酸(TA)溶液为底物,研究微生物燃料电池的产电效果.以厌氧活性污泥作为接种体,经过210 h驯化,开路电压达到0.54 V,证明了TA可以作为微生物燃料电池的底物进行产电.深入研究了不同pH值和底物浓度对产电的影响,实验结果表明,当体系pH为8.0时,负载两端(R=1 000 Ω)电压最大,底物浓度越高,负载两端电压越大,并逐渐趋近于一个最大值,通过Monod方程回归得到该微生物燃料电池体系输出电压的最大值Umax为0.5 V,Ks值为785.2 mg/L.当底物浓度(以COD计)为4 000 mg/L时,最大输出功率密度为96.3 mW/m2,库仑效率为2.66%,COD去除率为80.3%.  相似文献   

16.
单室型微生物燃料电池处理黄姜废水的性能研究   总被引:4,自引:3,他引:1  
王超  薛安  赵华章  张宝刚  倪晋仁 《环境科学》2009,30(10):3093-3098
以黄姜废水为底物,采用单室型微生物燃料电池,验证了MFC处理黄姜废水的可行性,研究了进水COD和SO42-浓度对产电性能的影响.控制电导率和COD等条件一致,黄姜废水最大功率密度为葡萄糖配水的80.3%.低COD浓度条件下MFC产电稳定,功率密度随COD浓度上升而提高,最高为322 mW/m2;当COD提高至2766 mg/L以上时,MFC稳定产电的时长缩短且更新基质后无法恢复最佳产电水平,表明过高的COD负荷会抑制产电微生物活性.COD最终去除率在68.2%~84.8%之间,且随着初始浓度的提高去除率有所下降.进水SO42-浓度的提高使MFC输出功率密度增大,但当SO42-浓度>7 716 mg/L(电导率>8.19 mS/cm)时,继续提高SO42-浓度无法使功率密度增大.与沉淀SO42-后的废水比较,含硫原水的最大功率密度平均下降14.5%,其库仑效率也随SO42-浓度提高明显下降,表明存在SO42-作为电子受体被还原,降低了MFC的效率.  相似文献   

17.
石墨烯掺杂聚苯胺阳极提高微生物燃料电池性能   总被引:3,自引:0,他引:3  
微生物燃料电池(microbial fuel cell,MFC)技术可分解代谢污染物质并同步输出电能,在环境及能源领域吸引了越来越多的关注.但是,输出功率密度较低、成本较高、底物降解率低等特点限制了其实际应用,其中阳极是主要限制因素之一.本研究选取具有优异导电性、大比表面积的石墨烯和生物相容性较好的聚苯胺(polyaniline,PANI),并优化二者比例关系,制备得到石墨烯掺杂PANI复合材料.将复合材料涂覆在玻碳电极表面分析电化学性能,循环伏安(cyclic voltammetry,CV)和线性伏安扫描(linear sweep voltammetry,LSV)测试结果均显示石墨烯含量占比20%的复合电极(20%石墨烯)电化学性能最好.将复合材料修饰在碳布表面作为MFC阳极时以石墨烯含量占比5%的复合电极(5%石墨烯)生物电化学性能最佳,LSV得到最大输出功率密度为(831±45)mW·m-2,分别是20%石墨烯、1%石墨烯、石墨烯、PANI、碳布阳极的1.2、1.3、1.3、1.5、1.8倍.最大输出电压、开路电压、化学需氧量去除率、库仑效率、生物量密度均以5%石墨烯电极最高.电化学阻抗分析表明5%石墨烯电极极化内阻仅为(24±2)Ω,是碳布电极的19.8%.电化学和生物电化学性能并不完全一致,说明电极材料的生物相容性是影响MFC性能的主要因素之一.5%石墨烯阳极充分发挥了石墨烯和聚苯胺的优点,提高了MFC的产电性能.  相似文献   

18.
利用玉米浸泡液产电的微生物燃料电池研究   总被引:5,自引:3,他引:5  
以玉米淀粉生产过程中的浸泡液(玉米浸泡液)作为接种液和基质,利用“三合一”膜电极的单室空气阴极微生物燃料电池进行试验,采用在线监测电压和废水分析方法对产电功率和化学需氧量(COD)、氨氮进行测定,探讨高COD、高氨氮有机废水产电及废水处理的可行性.结果表明,经过94 d(1个周期)的连续运行(固定外电阻为1 000 Ω),17 d时输出电压达到最大(525.0 mV),稳定期最大输出功率可达169.6 mW/m2,此时电池相应的电流密度为440.2 mA/m2,内阻约为350 Ω,开路电压619.5 mV;但燃料电池电子利用效率较低(库仑效率为1.6%);1个周期结束时浸泡液的COD去除率达到51.6%,氨氮去除率25.8%.本试验利用玉米浸泡液成功获得电能,同时对浸泡液有效地进行了处理,为其资源化利用提供新途径.  相似文献   

19.
通过构建双极室微生物燃料电池(microbial fuel cell,MFC),以铁氰化钾溶液为阴极电子受体,以硝基苯(nitrobenzene,NB)和葡萄糖为混合燃料,研究MFC的产电特性和NB的降解情况.结果表明,在外阻为1000Ω的条件下,随着NB初始浓度的增加,双极室MFC的产电特性明显受到抑制.当葡萄糖浓度为1000mg/L,NB初始浓度分别为0、50、150、250mg/L时,MFC的运行周期逐渐缩短,分别为55.7、51.6、45.9、32.2h;最大输出电压分别为670、597、507、489mV;最大体积功率密度分别为28.57、20.42、9.29、8.47W/m3;电荷量分别为65.10、43.50、35.48、30.32C.MFC利用NB和葡萄糖为混合燃料,可以在稳定地输出电能的同时实现有机物高效降解,MFC对NB去除率高达100%,对COD的去除率达到87%~98%.但以250mg/LNB为单一燃料时,MFC无明显产电现象.DGGE图谱表明NB的加入改变了MFC阳极电极上微生物的群落结构.  相似文献   

20.
以吡啶和葡萄糖为燃料的MFC产电特性研究   总被引:1,自引:0,他引:1  
不同类型的有机物对MFC的产电性能有不同的影响,通过构建填料型MFC,以吡啶和葡萄糖为混合燃料,以铁氰化钾为电子受体,对有机物在MFC中的降解以及产电性进行研究.结果表明,外阻为1 000Ω的条件下,MFC的最大输出电压随着葡萄糖浓度的降低而降低,当吡啶初始浓度为500 mg/L,葡萄糖浓度分别为500、250、100 mg/L时,运行周期逐渐缩短,分别为49.5、25.7、25.2 h;最大体积功率密度为48.5、36.2、15.2 W/m3,最高电压为623 mV.MFC可实现对吡啶的高效降解,24h内吡啶去除率高达95%,但葡萄糖的浓度对吡啶的降解速率影响不大;高浓度吡啶存在的条件下对MFC利用葡萄糖产电的性能影响不大.利用500 mg/L单一吡啶作为MFC的燃料时,无明显产电现象.MFC利用吡啶和葡萄糖作为混合燃料时,可以在实现吡啶降解的同时稳定地向外输出电能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号