首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Changes in the distribution of extracellular matrix components have been investigated immunohistochemically during neural crest development in the rat. Inside the ectodermal epithelium basal lamina components are formed resulting in a separation of neurectoderm and epidermal ectoderm. Within the presumptive neural crest area fibronectin, hyaluronan and chondroitin sulphate become apparent. Upon subsequent neural crest migration the basal lamina becomes disrupted. As the neural crest cells take part in mesectoderm formation, fragments of the basal lamina remain attached to their surface, as is demonstrated with antibodies against laminin and collagen type IV. The extracellular matrix is therefore active both in the separation of neuroectoderm from epidermal ectoderm and in mesectoderm formation.  相似文献   

2.
Summary A study of the ultrastructural changes associated with the detachment of the presumptive neural crest cells from the neuroepithelium in the midbrain region in mouse embryos at 9 and 91/2 days of gestation was carried out. The first sign of neural crest cell formation occurred in this region before fusion of the neuroepithelium had occurred. Neural crest cells arose from both the neural plate and the adjoining surface ectoderm. Initially, the cells of the neural plate and the surface ectoderm were attached to each other by zonula occludens and zonula adherans at their apical surfaces however, these junctions disappeared just prior to the beginning of the migration of the crest cells. The first sign of migration of the crest cells was the disappearance of the basal lamina in the region of the presumptive crest cells. Once the basal lamina was lost, cell junctions were formed between the epithelial cells and the underlying mesenchymal cells. Once the crest cells had migrated into the underlying mesenchyme, they tended to form clumps of closely related, irregularly shaped cells. Phagosomes and accumulations of glycogen particles were found within some crest cells when they were still within 50 to 100 microns of the epithelium.  相似文献   

3.
Summary Neural tubes containing premigratory neural crest cells from head and trunk levels as well as somites containing neural crest cells that have migrated away from the neural crest were grafted orthotopically and heterotopically from quail embryos to chicken embryos. Schwann cells and melanocytes of donor origin developed after all grafting procedures. Cartilage developed only from neural crest cells of head levels. No skeletal muscle was ever observed to develop from the neural crest. The development of these different cell types from heterotopically grafted premigratory neural crest cells indicates that the neural crest is not a population of pluripotent undeterminated cells, but that at least some determinated cells are present within it before the onset of emigration of neural crest cells from the neural crest. Different neural-crest-derived cell populations exhibit different migratory behaviour: After heterotopically grafting quail neural crest cells to the wing buds of chicken embryos. Schwann cells and non-epidermal melanocytes were found to have migrated proximally and distally away from the grafts. Epidermal melanocytes of donor origin were found to have migrated in a distal direction essentially.This work was supported by the Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung (P 4680)  相似文献   

4.
目的:初步探讨背侧抑制性轴突导向蛋白(draxin)在鸡胚脊髓神经嵴细胞迁移过程中的作用。方法:应用神经嵴细胞特异性标记物HNK-1免疫组化染色检测不同发育阶段正常鸡全胚脊髓神经嵴细胞迁移特性;鸡draxin表达载体质粒转染COS7细胞株,收集上清作为条件培养液。分别用含draxin的条件培养液处理体外培养的鸡全胚和鸡胚脊髓神经管,观察在体和离体条件下draxin对脊髓神经嵴细胞迁移特性的影响。结果:HH12-13到HH18-19阶段正常鸡胚脊髓发育过程中,神经嵴形成明显的从头侧到尾侧的渐进性、节段性迁移特性;draxin对体外培养的全胚和神经管内神经嵴细胞的迁移均具有明显抑制性调控作用。结论:Draxin抑制早期鸡胚脊髓神经嵴细胞的迁移。  相似文献   

5.
Background: Neural crest cells emerge by delamination from the dorsal neural tube and give rise to various components of the peripheral nervous system in vertebrate embryos. These cells change from non‐motile into highly motile cells migrating to distant areas before further differentiation. Mechanisms controlling delamination and subsequent migration of neural crest cells are not fully understood. Slit2, a chemorepellant for axonal guidance that repels and stimulates motility of trunk neural crest cells away from the gut has recently been suggested to be a tumor suppressor molecule. The goal of this study was to further investigate the role of Slit2 in trunk neural crest cell migration by constitutive expression in neural crest cells. Results: We found that Slit gain‐of‐function significantly impaired neural crest cell migration while Slit loss‐of‐function favored migration. In addition, we observed that the distribution of key cytoskeletal markers was disrupted in both gain and loss of function instances. Conclusions: These findings suggest that Slit molecules might be involved in the processes that allow neural crest cells to begin migrating and transitioning to a mesenchymal type. Developmental Dynamics 241:1274–1288, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
Background : Schwann cells, which arise from the neural crest, are the myelinating glia of the peripheral nervous system. During development neural crest and their Schwann cell derivatives engage in a sequence of events that comprise delamination from the neuroepithelium, directed migration, axon ensheathment, and myelin membrane synthesis. At each step neural crest and Schwann cells are polarized, suggesting important roles for molecules that create cellular asymmetries. In this work we investigated the possibility that one polarity protein, Pard3, contributes to the polarized features of neural crest and Schwann cells that are associated with directed migration and myelination. Results : We analyzed mutant zebrafish embryos deficient for maternal and zygotic pard3 function. Time‐lapse imaging revealed that neural crest delamination was normal but that migrating cells were disorganized with substantial amounts of overlapping membrane. Nevertheless, neural crest cells migrated to appropriate peripheral targets. Schwann cells wrapped motor axons and, although myelin gene expression was delayed, myelination proceeded to completion. Conclusions : Pard3 mediates contact inhibition between neural crest cells and promotes timely myelin gene expression but is not essential for neural crest migration or myelination. Developmental Dynamics 243:1511–1523, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Primary brain tumors lack the metastatic behavior that is in part believed to be promoted by the extracellular matrix (ECM) components of the basement membrane. This study was intended to examine the influence of the ECM components present in the basement membrane that may act as natural barriers to tumor cell invasion. We examined the effect of type I and type IV collagens, fibronectin, laminin, and hyaluronic acid on the migration and invasion of four established glioblastoma cell lines, SNB19, U251, UWRI, and UWR2. Lower concentrations of all the ECM components induced the migration and invasion of all the cell lines. However, in the case of SNB19, laminin inhibited both migration and invasion in a concentration-dependent manner. We have also examined the influence of individual ECM components on the migration of cells from a spheroid to a monolayer on ECM component-coated coverslips. Consistent with the invasion studies using the modified Boyden chamber assays, lower concentrations of ECM components induced the migration of cells from spheroids to monolayer. Again, laminin inhibited the migration of cells from SNB19 spheroids. These results indicate that ECM components induce the invasion of glioma cells, apart from components like laminin, which may act as natural inhibitors.  相似文献   

9.
目的 利用Sprouty2基因阻断成纤维细胞生长因子(FGF)信号,探讨FGF在早期鸡胚胎发育过程中对神经嵴细胞迁移的影响及其机制。方法 通过体内培养的方法孵育鸡胚至HH9期,通过显微注射的方法将Sprouty2-绿色荧光蛋白(GFP)质粒注射入神经管腔内。实验侧使用电穿孔转染的方法转染胚胎半侧神经管,另一侧正常神经管设为对照侧。采用神经嵴细胞特异标记物HNK1免疫荧光的方法检测Sprouty2基因阻断FGF信号后是否影响胚胎头部和躯干部神经嵴细胞的迁移过程。随后,进一步通过检测神经细胞钙黏分子N-Cadherin的表达来观察细胞之间黏附作用的改变。结果 HNK1免疫荧光检测结果显示,Sprouty2转染侧即阻断FGF信号通路后,HNK1在早期鸡胚胎的头部和躯干部的表达量均比对照侧的表达量增多;而神经细胞钙黏分子N-Cadherin检测结果表明,Sprouty2转染侧和正常对照侧N Cadherin在头部和躯干部神经管上表达量的差异均无显著性。结论 Sprouty2基因阻断FGF信号后,促进了早期鸡胚胎神经嵴细胞的迁移,但是FGF信号对此过程的影响可能不是由神经钙黏分子N-Cadherin介导的。  相似文献   

10.
Background: Hyaluronan is a crucial glycosaminoglycan of the vertebrate embryonic extracellular matrix able to influence cell behaviour, both by assembling the pericellular matrices and by activating signal transducing receptors such as CD44. Results: We showed that the hyaluronan synthases, Has1 and Has2, and CD44 display a dynamic expression pattern during cranial neural crest cells (NCC) development. By knocking down Has1 and Has2 gene functions, we revealed that hyaluronan synthesized by Has1 and Has2 is necessary for the proper development of the visceral skeleton. Conclusions: The data suggest that hyaluronan helps to maintain the active migratory behaviour of cranial NCC, and that its presence around pre‐chondrogenic NCC is crucial for their survival. CD44 knock down also suggests that the role of hyaluronan in cranial NCC migration could be mediated, at least in part, by the activation of CD44. These findings contribute to the unveiling of the functional relation between NCC and their extracellular environment during craniofacial development. Developmental Dynamics 241:294–302, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
The neural crest serves as a powerful and tractable model paradigm for understanding collective cell migration. The neural crest cell populations are well-known for their long-distance collective migration and contribution to diverse cell lineages during vertebrate development. If neural crest cells fail to reach a target or populate an incorrect location, then improper cell differentiation or uncontrolled cell proliferation can result. A wide range of interdisciplinary studies has been carried out to understand the response of neural crest cells to different stimuli and their ability to migrate to distant targets. In this critical commentary, we illustrate how an interdisciplinary collaboration involving experimental and mathematical modeling has led to a deeper understanding of cranial neural crest cell migration. We identify open questions and propose possible ways to start answering some of the challenges arising.  相似文献   

12.
Neural crest cells give rise to a diverse range of structures during vertebrate development. These cells initially exist in the dorsal neuroepithelium and subsequently acquire the capacity to migrate. Although studies have documented the importance of adherens junctions in regulating neural crest cell migration, little attention has been paid to tight junctions during this process. We now identify the tight junction protein cingulin as a key regulator of neural crest migration. Cingulin knock-down increases the migratory neural crest cell domain, which is correlated with a disruption of the neural tube basal lamina. Overexpression of cingulin also augments neural crest cell migration and is associated with similar basal lamina changes and an expansion of the premigratory neural crest population. Cingulin overexpression causes aberrant ventrolateral neuroepithelial cell delamination, which is linked to laminin loss and a decrease in RhoA. Together, our results highlight a novel function for cingulin in the neural crest.  相似文献   

13.
The fabrication of an instructive bioabsorbable scaffold is one of the main goals for tissue engineering applications. In this regard, genipin cross-linked gelatin scaffolds, produced by electrospinning, were tested as a platform to include decellularized rat brain extracellular matrix as an active agent to provide fundamental biochemical cues to the seeded cells. This approach is expected to furnish a suitable natural-based polymeric scaffold with sufficient temporal stability to support cell attachment and spreading, also providing tissue-specific signals that can contribute to the expression of the requested cellular phenotype. We first demonstrated the effectiveness of the proposed decellularization protocol and the cytocompatibility of the resulting brain matrix. Then, the in vitro biological assays of the conditioned electrospun scaffolds, using rat allogeneic mesenchymal stromal cells, confirmed their biocompatibility and showed a differentiative potential in presence of just 1% w/w decellularized rat brain extracellular matrix.  相似文献   

14.
The role of chemokines and their interactions with extracellular matrix components (ECM) or the capacity of T cells to migrate into and accumulate within three-dimensional (3D) collagen type 1 substrata was studied. We examined the influence of chemokines and fibronectin on the infiltration properties of non-infiltrative (do not migrate into 3D substrata) and spontaneously infiltrative (migrate into 3D substrata) T-cell lines. Infiltrative and non-infiltrative T-acute lymphocytic leukaemic cell lines exhibited no consistent differences with respect to the expression of various chemokine receptors or beta(1)-integrins. Chemokines presented inside the collagen increased the depth of migration of infiltrative T-cell lines, but did not render non-infiltrative T-cell lines infiltrative, although they augmented the attachment of non-infiltrative T-cell lines to the upper surface of the collagen. The presence of fibronectin inside the collagen did not render non-infiltrative T-cell lines infiltrative, but markedly augmented the migration of 'infiltrative' T-cell lines into collagen. Both infiltrative and non-infiltrative T-cell lines showed migratory responses to chemokines in Boyden assays (migration detected on 2D substrata). These results indicate that the process of T-cell infiltration/migration into 3D substrata depends on a tissue penetration mechanism distinguishable from migration on 2D substrata and that the basic capacity of T cells to infiltrate is independent of chemokines and ECM components applied as attractants.  相似文献   

15.
目的:探讨正常鸡胚脊髓发育过程中背侧抑制性轴突导向蛋白的表达时间和表达部位与鸡胚脊髓神经嵴细胞迁移过程的相关性。方法:应用原位杂交、免疫组织化学等方法,观察鸡胚脊髓内背侧抑制性轴突导向蛋白的表达时间和表达部位及神经嵴细胞迁移路径,同时比较两者在时间和空间分布上的相关性;应用免疫组织化学、电穿孔的方法在正常鸡胚一侧脊髓内过表达背侧抑制性轴突导向蛋白,观察背侧抑制性轴突导向蛋白过表达对鸡胚脊髓内神经嵴细胞迁移的影响。结果:正常鸡胚脊髓发育过程中,背侧抑制性轴突导向蛋白的表达时间早于神经嵴细胞开始迁移的时间。背侧抑制性轴突导向蛋白表达由颅侧向尾侧呈节段性分布,而神经嵴细胞在节段性分布的背侧抑制性轴突导向蛋白之间进行迁移;电穿孔过表达背侧抑制性轴突导向蛋白引起相邻部位神经嵴细胞迁移路径的异常。结论:背侧抑制性轴突导向蛋白的表达时间和表达部位与脊髓神经嵴细胞的迁移密切相关。  相似文献   

16.
17.
目的:阐明神经钙黏蛋白(N-cadherin)在神经嵴细胞分层中的作用。方法: 利用原位杂交鉴定N-cadherin在神经管上的表达。转染过表达N-cadherin的野生型N-cadherin(wild-type N-cadherin, wt-N-cad)或阻断N-cadherin表达的结构域缺失型N-cadherin(dominant-negative N-cadherin, dn-N-cad),利用免疫组化方法检测头部神经嵴细胞的迁移变化。结果: 无论是过表达N-cadherin还是下调N-cadherin表达,头部神经嵴细胞迁移都受到了影响。结论: 头部神经嵴细胞的分层和迁移依赖于神经管上N-cadherin的表达。  相似文献   

18.
神经干细胞克隆在不同细胞外基质上的生长特性   总被引:2,自引:0,他引:2  
许汉鹏  苟琳  杨浩  王春婷  鞠躬 《解剖学杂志》2004,27(3):249-252,306
目的:观察不同细胞外基质对培养神经干细胞生长特性的影响。方法:经体外扩增和传代,神经干细胞克隆被接种于多聚赖氨酸、多聚鸟氨酸和鼠尾胶原形成的细胞外基质上,观察其增殖和迁移特性。结果:未经包被的塑料培养板作为基质时,体积较大的神经干细胞克隆才能贴壁,贴壁后的克隆仍呈球形,在其底部有细胞呈放射状迁出,数量逐渐增多,以梭形为主,细胞排列稀疏;多聚鸟氨酸和多聚赖氨酸作为细胞外基质时,迁移细胞排列密集,形态多样;鼠尾胶原作为细胞外基质时,促贴壁迁移的作用最差。当多聚赖氨酸和鼠尾胶原形成界限时可明显观察到鼠尾胶原对细胞迁移的抑制作用。结论:在各种基质上,克隆体积均可继续增长,但在鼠尾胶原上增长较慢。  相似文献   

19.
Ligands in the extracellular matrix (ECM) are known to mediate migration of normal as well as tumor cells via adhesion molecules such as the integrin receptor family. We developed a microliter scale (15-20 fu total volume) monolayer migration assay to investigate the ability of astrocytoma cells to disperse on surfaces coated with purified human ECM protein ligands. In this system the rate of radial migration of the cell population was constant over time. For human astrocytoma cell lines U-251 and SF-767, laminin and collagen type IV supported a migratory phenotype; fibronectin and vitronectin only minimally supported migration. The different ECM proteins also influenced growth rate: cells on laminin and collagen had a protracted lag phase. Furthermore, migrating cells seeded on laminin or collagen showed a lower labeling index than did stationary cells in the central, crowded region on the same substrate. This micro-scale migration assay should enable detailed molecular and biochemical studies of the determinants of migration.  相似文献   

20.
The neural crest is a multipotent tissue that originates between the neural epithelium and non-neural ectoderm, which can develop into numerous cell types, including neurons, glia, pigment cells, smooth muscle, cartilage and bone. Work in a variety of animal models has shown that a number of signalling factors are necessary for the induction, delamination and differentiation of neural crest cells. However one family of proteins, the Wnts, shows an overriding influence on this tissue. Here we review recent studies that pinpoint specific roles that Wnts play in the development of the neural crest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号