首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In recent years, the role of sphingolipids in pathogenic fungi, in terms of pathogenicity and resistance to azole drugs, has been a rapidly growing field. This review describes evidence about the roles of sphingolipids in azole resistance and fungal virulence. Sphingolipids can serve as signaling molecules that contribute to azole resistance through modulation of the expression of drug efflux pumps. They also contribute to azole resistance by participating in various microbial pathways such as the unfolded protein response (UPR), pH-responsive Rim pathway, and pleiotropic drug resistance (PDR) pathway. In addition, sphingolipid signaling and eisosomes also coordinately regulate sphingolipid biosynthesis in response to azole-induced membrane stress. Sphingolipids are important for fungal virulence, playing roles during growth in hosts under stressful conditions, maintenance of cell wall integrity, biofilm formation, and production of various virulence factors. Finally, we discuss the possibility of exploiting fungal sphingolipids for the development of new therapeutic strategies to treat infections caused by pathogenic fungi.  相似文献   

2.
Synthesis of phospholipids, sterols and sphingolipids is thought to occur at contact sites between the endoplasmic reticulum (ER) and other organelles because many lipid‐synthesizing enzymes are enriched in these contacts. In only a few cases have the enzymes been localized to contacts in vivo and in no instances have the contacts been demonstrated to be required for enzyme function. Here, we show that plasma membrane (PM)—ER contact sites in yeast are required for phosphatidylcholine synthesis and regulate the activity of the phosphatidylethanolamine N‐methyltransferase enzyme, Opi3. Opi3 activity requires Osh3, which localizes to PM–ER contacts where it might facilitate in trans catalysis by Opi3. Thus, membrane contact sites provide a structural mechanism to regulate lipid synthesis.  相似文献   

3.
《Journal of lipid research》2017,58(12):2310-2323
Ergosterol biosynthesis pathways essential to pathogenic protozoa growth and absent from the human host offer new chokepoint targets. Here, we present characterization and cell-based interference of Acanthamoeba spp sterol 24-/28-methylases (SMTs) that catalyze the committed step in C28- and C29-sterol synthesis. Intriguingly, our kinetic analyses suggest that 24-SMT prefers plant cycloartenol whereas 28-SMT prefers 24(28)-methylene lophenol in similar fashion to the substrate preferences of land plant SMT1 and SMT2. Transition state analog-24(R,S),25-epiminolanosterol (EL) and suicide substrate 26,27-dehydrolanosterol (DHL) differentially inhibited trophozoite growth with IC50 values of 7 nM and 6 µM, respectively, and EL yielded 20-fold higher activity than reference drug voriconazole. Against either SMT assayed with native substrate, EL exhibited tight binding ∼Ki 9 nM. Alternatively, DHL is methylated at C26 by 24-SMT that thereby, generates intermediates that complex and inactivate the enzyme, whereas DHL is not productively bound to 28-SMT. Steroidal inhibitors had no effect on human epithelial kidney cell growth or cholesterol biosynthesis at minimum amoebicidal concentrations. We hypothesize the selective inhibition of Acanthamoeba by steroidal inhibitors representing distinct chemotypes may be an efficient strategy for the development of promising compounds to combat amoeba diseases.  相似文献   

4.
5.
6.
Three families of membrane‐active peptides are commonly found in nature and are classified according to their initial apparent activity. Antimicrobial peptides are ancient components of the innate immune system and typically act by disruption of microbial membranes leading to cell death. Amyloid peptides contribute to the pathology of diverse diseases from Alzheimer's to type II diabetes. Preamyloid states of these peptides can act as toxins by binding to and permeabilizing cellular membranes. Cell‐penetrating peptides are natural or engineered short sequences that can spontaneously translocate across a membrane. Despite these differences in classification, many similarities in sequence, structure, and activity suggest that peptides from all three classes act through a small, common set of physical principles. Namely, these peptides alter the Brownian properties of phospholipid bilayers, enhancing the sampling of intrinsic fluctuations that include membrane defects. A complete energy landscape for such systems can be described by the innate membrane properties, differential partition, and the associated kinetics of peptides dividing between surface and defect regions of the bilayer. The goal of this review is to argue that the activities of these membrane‐active families of peptides simply represent different facets of what is a shared energy landscape.  相似文献   

7.
Embryonic stem cells: a promising tool for cell replacement therapy   总被引:20,自引:0,他引:20  
Embryonic stem (ES) cells are revolutionizing the field of developmental biology as a potential tool to understand the molecular mechanisms occurring during the process of differentiation from the embryonic stage to the adult phenotype. ES cells harvested from the inner cell mass (ICM) of the early embryo can proliferate indefinitely in vitro while retaining the ability to differentiate into all somatic cells. Emerging results from mice models with ES cells are promising and raising tremendous hope among the scientific community for the ES-cell based cell replacement therapy (CRT) of various severe diseases. ES cells could potentially revolutionize medicine by providing an unlimited renewable source of cells capable of replacing or repairing tissues that have been damaged in almost all degenerative diseases such as diabetes, myocardial infarction and Parkinson's disease. This review updates the progress of ES cell research in CRT, discusses about the problems encountered in the practical utility of ES cells in CRT and evaluates how far this approach is successful experimentally.  相似文献   

8.
The ability of cullin 4A (CUL4A), a scaffold protein, to recruit a repertoire of substrate adaptors allows it to assemble into distinct E3 ligase complexes to mediate turnover of key regulatory proteins. In the past decade, a considerable wealth of information has been generated regarding its biology, regulation, assembly, molecular architecture and novel functions. Importantly, unravelling of its association with multiple tumours and modulation by viral proteins establishes it as one of the key proteins that may play an important role in cellular transformation. Considering the role of its substrate in regulating the cell cycle and maintenance of genomic stability, understanding the detailed aspects of these processes will have significant consequences for the treatment of cancer and related diseases. This review is an effort to provide a broad overview of this multifaceted ubiquitin ligase and addresses its critical role in regulation of important biological processes. More importantly, its tremendous potential to be exploited for therapeutic purposes has been discussed.  相似文献   

9.
The endocytosis‐mediating performances of two types of peptide ligands, cell receptor binding peptide (CRBP) and cell membrane penetrating peptide (CMPP), were analyzed and compared using a common carrier of peptide ligands‐human ferritin heavy chain (hFTH) nanoparticle. Twenty‐four copies of a CMPP(human immunodeficiency virus‐derived TAT peptide) and/or a CRBP (peptide ligand with strong and specific affinity for either human integrin(αvβ3) or epidermal growth factor receptor I (EGFR) that is overexpressed on various cancer cells) were genetically presented on the surface of each hFTH nanopariticle. The quantitative level of endocytosis and intracellular localization of fluorescence dye‐labeled CRBP‐ and CMPP‐presenting nanoparticles were estimated in the in vitro cultures of integrin‐ and EGFR‐overexpressing cancer and human dermal fibroblast cells(control). From the cancer cell cultures treated with the CMPP‐ and CRBP‐presenting nanoparticles, it was notable that CRBPs resulted in quantitatively higher level of endocytosis than CMPP (TAT) and successfully transported the nanoparticles to the cytosol of cancer cells depending on concentration and treatment period of time, whereas TAT‐mediated endocytosis localized most of the nanoparticles within endosomal vesicles under the same conditions. These novel findings provide highly useful informations to many researchers both in academia and in industry who are interested in developing anticancer drug delivery systems/carriers.  相似文献   

10.
Chemically tritiated actin from rabbit skeletal muscle was used to investigate the association of G-actin with the red cell membrane. The tritiated actin was shown to be identical to unmodified actin in its ability to polymerize and to activate heavy meromyosin ATPase. Using sealed and unsealed red cell ghosts we have shown that G-actin binds to the cytoplasmic but not the extracellular membrane surface of ghosts. Inside-out vesicles which have been stripped of endogenous actin and spectrin by low-ionic-strength incubation bind little G-actin. However, when a crude spectrin extract containing primarily spectrin, actin, and band 4.1 is added back to stripped vesicles, subsequent binding of G-actin can be increased up to 40-fold. Further, this crude spectrin extract can compete for and abolish G-actin binding to unsealed ghosts. Actin binding to ghosts increases linearly with added G-actin and requires the presence of magnesium. In addition, actin binding is inhibited by cytochalasin B and DNAase I. Negative staining reveals an abundance of actin filaments formed when G-actin is added to reconstituted inside-out vesicles but none when it is added to unreconstituted vesicles. These observations indicate that added G-actin binds to the red cell membrane via filament formation nucleated by some membrane component at the cytoplasmic surface.  相似文献   

11.
Whole cell therapy is showing potential in the clinic for the treatment of many chronic diseases. The translation of laboratory‐scale methods for cell harvesting and formulation to commercial‐scale manufacturing offers major bioprocessing challenges. This is especially the case when the cell properties determine the final product effectiveness. This study is focused on developing an ultra scale‐down method for assessing the impact of the hydrodynamic environment on human cells that constitute the therapeutic product. Small volumes of a prostate cancer cell line, currently being developed in late phase II clinical trials as an allogeneic whole cell vaccine therapy for prostate cancer, were exposed to hydrodynamic shear rates similar to those present in downstream process, formulation and vial filling operations. A small scale rotating disc shear device (20 mL) was used over a range of disc speeds to expose cells to maximum shear rates ranging from 90 × 103 to 175 × 103 s‐1 (equivalent maximum power dissipation rates of 14 × 103 to 52 × 103 W kg‐1). These cells were subsequently analyzed for critical cell quality attributes such as the retention of membrane integrity and cell surface marker profile and density. Three cell surface markers (CD9, CD147, and HLAA‐C) were studied. The cell markers exhibited different levels of susceptibility to hydrodynamic shear but in all cases this was less than or equal to the loss of membrane integrity. It is evident that the marker, or combination or markers, which might provide the required immunogenic response, will be affected by hydrodynamic shear environment during bioprocessing, if the engineering environment is not controlled to within the limits tolerated by the cell components. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
Chitin, after cellulose, is the second most abundant natural polymer. With a 200-year history of scientific research, chitin is beginning to see fruitful application in the fields of stem cell and tissue engineering. To date, however, research in chitin as a biomaterial appears to lag far behind that of its close relative, chitosan, due to the perceived difficulty in processing chitin. This review presents methods to improve the processability of chitin, and goes on further to discuss the unique physicochemical and biological characteristics of chitin that favor it as a biomaterial for regenerative medicine applications. Examples of the latter are presented, with special attention on the qualities of chitin that make it inherently suitable as scaffolds and matrices for tissue engineering, stem cell propagation and differentiation.  相似文献   

13.
The activity of protein O‐mannosyltransferases (Pmts) affects the morphogenesis and virulence of fungal pathogens. Recently, PMT genes have been shown to determine the sensitivity of Saccharomyces cerevisiae to the antifungal peptide PAF26. This study reports the identification and characterization of the three Pdpmt genes in the citrus post‐harvest pathogen Penicillium digitatum. The Pdpmt genes are expressed during fungal growth and fruit infection, with the highest induction for Pdpmt2. Pdpmt2 complemented the growth defect of the S. cerevisiae Δpmt2 strain. The Pdpmt2 gene mutation in P. digitatum caused pleiotropic effects, including a reduction in fungal growth and virulence, whereas its constitutive expression had no phenotypic effect. The Pdpmt2 null mutants also showed a distinctive colourless phenotype with a strong reduction in the number of conidia, which was associated with severe alterations in the development of conidiophores. Additional effects of the Pdpmt2 mutation were hyphal morphological alterations, increased sensitivity to cell wall‐interfering compounds and a blockage of invasive growth. In contrast, the Pdpmt2 mutation increased tolerance to oxidative stress and to the antifungal activity of PAF26. These data confirm the role of protein O‐glycosylation in the PAF26‐mediated antifungal mechanism present in distantly related fungal species. Important to future crop protection strategies, this study demonstrates that a mutation rendering fungi more resistant to an antifungal peptide results in severe deleterious effects on fungal growth and virulence.  相似文献   

14.
Species of the fungal genus Aspergillus are significant human and agricultural pathogens that are often refractory to existing antifungal treatments. Protein farnesyltransferase (FTase), a critical enzyme in eukaryotes, is an attractive potential target for antifungal drug discovery. We report high‐resolution structures of A. fumigatus FTase (AfFTase) in complex with substrates and inhibitors. Comparison of structures with farnesyldiphosphate (FPP) bound in the absence or presence of peptide substrate, corresponding to successive steps in ordered substrate binding, revealed that the second substrate‐binding step is accompanied by motions of a loop in the catalytic site. Re‐examination of other FTase structures showed that this motion is conserved. The substrate‐ and product‐binding clefts in the AfFTase active site are wider than in human FTase (hFTase). Widening is a consequence of small shifts in the α‐helices that comprise the majority of the FTase structure, which in turn arise from sequence variation in the hydrophobic core of the protein. These structural effects are key features that distinguish fungal FTases from hFTase. Their variation results in differences in steady‐state enzyme kinetics and inhibitor interactions and presents opportunities for developing selective anti‐fungal drugs by exploiting size differences in the active sites. We illustrate the latter by comparing the interaction of ED5 and Tipifarnib with hFTase and AfFTase. In AfFTase, the wider groove enables ED5 to bind in the presence of FPP, whereas in hFTase it binds only in the absence of substrate. Tipifarnib binds similarly to both enzymes but makes less extensive contacts in AfFTase with consequently weaker binding.  相似文献   

15.
The purpose of this study was to investigate the fate of transplanted cells in the central zone of myocardial infarction (MI), and to clarify the relationship between the injection-site impact and the efficacy of cell therapy. MI was created by coronary ligation in female rats. Three weeks later, 3-million labelled male bone marrow mesenchymal stem cells (BMSCs) were directly injected into the border (BZC group) or central zone (CZC group) of MI area. As a control, culture medium was injected into the same sites. Cell survival was evaluated by quantitative real-time polymerase chain reaction, and apoptosis was assayed with TUNEL and caspase-3 staining. Four weeks after transplantation, heart function and cardiac morphometry were evaluated by echocardiography and Masson's Trichrome staining, respectively. Angiogenesis and myogenesis were detected by immunofluorescence staining. After cell transplantation into the border or central zone, there was no cell migration between the different zones of MI. BMSCs in the CZC group exhibited no difference in apoptotic percentage, in the long-term survival, when compared with those in the BZC group. However, they did effectively promote angiogenesis and cellular myogenic differentiation. Although cell delivery in the central zone of MI had no effect on the recovery of heart function compared with the BZC group, the retained BMSCs could still increase the scar thickness, and subsequently exhibit a trend in the reverse remodelling of ventricular dilation. Hence, we concluded that the central zone of MI should not be ignored during cell-based therapy. Multiple site injection (border+central zone) is strongly recommended during the procedure of cell transplantation.  相似文献   

16.
For decades, mesenchymal stem (MSCs) cells have been used for cardiovascular diseases as regenerative therapy. This review is an attempt to summarize the types of MSCs involved in myocardial infarction (MI) therapy, as well as its possible mechanisms effects, especially the paracrine one in MI focusing on the studies (human and animal) conducted within the last 10 years. Recently, reports showed that MSC therapy could have infarct‐limiting effects after MI in both experimental and clinical trials. In this context, various types of MSCs can help cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Furthermore, MSCs could produce paracrine growth factors that increase the survival of nearby cardiomyocytes, as well as increase angiogenesis through recruitment of stem cell from bone marrow or inducing vessel growth from existing capillaries. Recent research suggests that the paracrine effects of MSCs could be mediated by extracellular vesicles including exosomes. Exosomal microRNAs (miRNAs) released by MSCs are promising therapeutic hotspot target for MI. This could be attributed to the role of miRNA in cardiac biology, including cardiac regeneration, stem cell differentiation, apoptosis, neovascularization, cardiac contractility and cardiac remodeling. Furthermore, gene‐modified MSCs could be a recent promising therapy for MI to enhance the paracrine effects of MSCs, including better homing and effective cell targeted tissue regeneration. Although MSC therapy has achieved considerable attention and progress, there are critical challenges that remains to be overcome to achieve the most effective successful cell‐based therapy in MI.  相似文献   

17.
P7, a peptide analogue derived from cell‐penetrating peptide ppTG20, possesses antibacterial and antitumor activities without significant hemolytic activity. In this study, we investigated the antifungal effect of P7 and its anti‐Candida acting mode in Candida albicans. P7 displayed antifungal activity against the reference C. albicans (MIC = 4 μM), Aspergilla niger (MIC = 32 μM), Aspergillus flavus (MIC = 8 μM), and Trichopyton rubrum (MIC = 16 μM). The effect of P7 on the C. albicans cell membrane was examined by investigating the calcein leakage from fungal membrane models made of egg yolk l ‐phosphatidylcholine/ergosterol (10 : 1, w/w) liposomes. P7 showed potent leakage effects against fungal liposomes similar to Melittin‐treated cells. C. albicans protoplast regeneration assay demonstrated that P7 interacted with the C. albicans plasma membrane. Flow cytometry of the plasma membrane potential and integrity of C. albicans showed that P7 caused 60.9 ± 1.8% depolarization of the membrane potential of intact C. albicans cells and caused 58.1 ± 3.2% C. albicans cell membrane damage. Confocal laser scanning microscopy demonstrated that part of FITC‐P7 accumulated in the cytoplasm. DNA retardation analysis was also performed, which showed that P7 interacted with C. albicans genomic DNA after penetrating the cell membrane, completely inhibiting the migration of genomic DNA above the weight ratio (peptide : DNA) of 6. Our results indicated that the plasma membrane was the primary target, and DNA was the secondary intracellular target of the mode of action of P7 against C. albicans. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
SYNOPSIS. Tetrahymena pyriformis is an exceptionally useful subject for studying metabolic interrelationships among intracellular membranes. Its advantages include the striking differences in lipid composition among the cell's various functionally distinct membrane systems, indicating a pronounced lipid specificity at the membrane sites. The magnitude of these differences permits analysis of the mechanisms underlying the specificity. Even more valuable is the unique physical isolation of ciliate surface membranes from the cytoplasm of the cell. In contrast to the almost immediate equilibration of newly made lipids with preexisting lipids found in most cells, Tetrahymena surface membranes have a lipid turnover slow enough to be conveniently analyzed. Finally, the well-studied responses of Tetrahymena to such physiological stresses as heat and starvation may be used to evaluate the effects of environmental factors on membrane formation.  相似文献   

19.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell–derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号