首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The rapid evolution of portable and wearable electronic devices has fueled the development of smart functional textiles that are able to conduct electricity, sense body movements, or store energy. One main challenge inhibiting the further development of functional textile-based electronics is the lack of robust functional fibers with suitable electrical, electrochemical and sensing functionalities. MXenes, an emerging family of two-dimensional(2D) materials, have shown to be promising candidates...  相似文献   

2.
MXenes are a new group of 2D nanomaterials with fascinating properties including high electrical conductivity, hydrophilic nature, easily tunable structure and high surface area. This is why MXene modified interfaces are extremely promising for the preparation of sensitive electrochemical biosensors. While there are numerous reports on MXene‐based enzymatic biosensors for detection of a wide range of analytes, application of MXene for construction of affinity biosensors is in its infancy. The review article summarizes current state‐of the‐art in the field with a focus on MXene modifications needed for construction of robust and high performance MXene electrochemical biosensors.  相似文献   

3.
回顾了近年来有序介孔材料在电化学生物传感器中的应用及发展状况,简述了规则介孔材料的合成方法及特点、生物分子在介孔材料上的固定方法及其优缺点,通过总结近年几种介孔材料电化学生物传感器的研究进展,提出介孔材料在电化学生物传感器领域的应用前景(引用文献49篇)。  相似文献   

4.
《中国化学快报》2020,31(4):922-930
MXenes have emerged as versatile 2D materials that are already gaining paramount attention in the areas of energy,catalyst,electromagnetic shielding,and sensors.The unique surface chemistry,graphene-like mo rphology,high hydrophilicity,metal-like conductivity with redox capability identifies MXenes,as an ideal material for surface-related applications.This short review summarizes the most recent reports that discuss the potential application of MXenes and their hybrids as a transducer material for advanced sensors.Based on the nature of transducing signals,the discussion is categorized into three sections,which include electrochemical(bio) sensors,gas sensors,and finally,electro-chemiluminescence fluorescent sensors.The review provides a concise summary of all the analytical merits obtained subsequent to the use of MXenes,followed by endeavors that have been made to accentuate the future perspective of MXenes in sensor devices.  相似文献   

5.
Conductive layered materials such as MXenes (e.g., transition metal carbides, nitrides, and carbonitrides), graphene and their derivatives have attracted tremendous research interests in diverse fields of research for their unique structured merits and outstanding physical and chemical properties. Benefitting from their unique layered structures and fascinating multifunctional characteristic, MXenes and graphene serve as vital components in a variety of wearable devices. Especially, due to their large surface area and high electrocatalytic activity, these materials have also demonstrated great promise in biophysical and biochemical sensing systems. Following an introduction into the field, we summarize the recent progress in wearable sensors that can be accomplished by using layered materials, with a specific focus on kinematic, mechanical, thermal, pressure and strain sensors. A further large section underscores the recent progress in MXenes and graphene based wearable biochemical sensors including electrolyte monitoring, glucose monitoring, micro/mcromolecular organics metabolite, volatile gases monitoring and humidity sensors. The next section covers the sensing of small biomolecules serving as biomarkers, which are of great significance for early diagnosis and treatment of a spectrum of diseases. This review underscores the recent progress in wearable sensors to be used in different physiological and environmental signals. Finally, the review concludes with a debate on current challenges being faced and future perspectives.  相似文献   

6.
Enzymes, primarily different types of oxidases and most commonly peroxidase, are often used in the construction of biosensors. Enzymatic biosensors, due to their small size, easy to handle construction, accuracy and specificity, are powerful healthcare tools commonly used for the diagnosis of diseases for more than 20 years. Unfortunately, the loss of enzymatic activity during the immobilization of enzymes into biosensors has been a recent major problem. Hence, nonenzymatic electrochemical sensors based on organic and inorganic nanostructures have gained great attention in the last few years. In this short review, different types of nanostructures and nanocomposites and their practical applications in the construction of nonenzymatic electrochemical sensors in healthcare and diagnosis are described and summarized.  相似文献   

7.
Electroanalysis has obtained considerable progress over the past few years, especially in the field of electrochemical sensors. Broadly speaking, electrochemical sensors include not only conventional electrochemical biosensors or non-biosensors, but also emerging electrochemiluminescence (ECL) sensors and photoelectrochemical (PEC) sensors which are both combined with optical methods. In addition, various electrochemical sensing devices have been developed for practical purposes, such as multiplexed simultaneous detection of disease-related biomarkers and non-invasive body fluid monitoring. For the further performance improvement of electrochemical sensors, material is crucial. Recent years, a kind of two-dimensional (2D) nanomaterial MXene containing transition metal carbides, nitrides and carbonitrides, with unique structural, mechanical, electronic, optical, and thermal properties, have attracted a lot of attention form analytical chemists, and widely applied in electrochemical sensors. Here, we reviewed electrochemical sensors based on MXene from Nov. 2014 (when the first work about electrochemical sensor based on MXene published) to Mar. 2021, dividing them into different types as electrochemical biosensors, electrochemical non-biosensors, electrochemiluminescence sensors, photoelectrochemical sensors and flexible sensors. We believe this review will be of help to those who want to design or develop electrochemical sensors based on MXene, hoping new inspirations could be sparked.  相似文献   

8.
《中国化学快报》2021,32(9):2648-2658
MXenes are a group of recently discovered 2D materials and have attracted extensive attention since their first report in 2011; they have shown excellent prospects for energy storage applications owing to their unique layered microstructure and tunable electrical properties. One major feature of MXenes is their tailorable surface terminations (e.g., −F, −O, −OH). Numerous studies have indicated that the composition of the surface terminations can significantly impact the electrochemical properties of MXenes. Nonetheless, the underlying mechanisms are still poorly understood, mainly because of the difficulties in quantitative analysis and characterization. This review summarizes the latest research progress on MXene terminations. First, a systematic introduction to the approaches for preparing MXenes is presented, which generally dominates the surface terminations. Then, theoretical and experimental efforts regarding the surface terminations are discussed, and the influence of surface terminations on the electronic and electrochemical properties of MXenes are generalized. Finally, we present the significance and research prospects of MXene terminations. We expect this review to encourage research on MXenes and provide guidance for usingthese materials for batteries and supercapacitors.  相似文献   

9.
Wearable sensing devices have transformed the hourly analysis of events such as body signals and environmental risks into real-time monitoring in minutes or seconds. Wearable sensors have facilitated the ability to obtain useful data by monitoring the physiological parameters and activities of an aided and a healthy individual. Wearable devices employ detectable biomarkers in the human body, such as in tears, saliva, interstitial fluid, sweat, and so on. These can deliver relevant information on human health, online activity monitoring, and therapeutic treatments. This section outlines the significance of sample types and associated biomarkers as indicators in the development and manufacturing of wearable biosensors. We have emphasized the most recent advances of wearables based on skin-like and textile, giving attention to personalized health monitoring to record signals of motion and physiological and body fluid investigation. Furthermore, this review categorizes wearable biosensors based on the sensing mechanism, electrochemical, optical, and mechanical. Additionally, the recent wearables related to the detection of the newly havoc-causing pandemic, COVID-19, and the future perspective for the development of much more advanced and potent wearable biosensors have been highlighted. The final section highlights unmet difficulties and gaps in wearable sensors in personalized therapy.  相似文献   

10.
Polyaniline (PANI) is one of the most extensively used conducting polymer due to its fascinating properties including conducting, thermal, optical, magnetic and electrochemical properties, simple synthesis procedure and low cost of monomer. It has attracted major attention in a variety of applications including electrochemical sensors, catalysts, supercapacitors and biosensors. However, its limitations such as insolubility in common solvents, low process-ability and poor mechanical properties have led to the development of new approaches to improve it properties. Metal nanoparticles (MNPs) such as silver, gold, copper and palladium have been combined with PANI to improve on its properties which has led to a new class of materials known as metal/PANI nanocomposites. These hybrid nanocomposites incorporate advantages of both MNPs and polymers which effectively improves the properties of the individual materials. Various synthesis techniques including in situ polymerization, ɤ-radiolysis, electrodeposition, complexation, vacuum deposition and interfacial polymerization have been used in the formation of metal/PANI nanocomposites. These nanocomposites have been used in various sensor and biosensor applications due to their excellent conductivity, ease of synthesis, excellent redox potentials, chemical and thermal stability. This review highlights the various metal/PANI nanocomposites, their various synthesis techniques and their application in sensors and biosensors. The importance of these nanocomposites in sensing and signaling various toxic heavy metals such as mercury, lead and silver and toxic gases such as hydrogen sulphide, ammonia and chloroform has been discussed. In addition the review covers the applications of metal/PANI nanocomposites in biosensor systems for the detection of glucose, DNA, protein, cholesterol, drugs and hydrogen peroxide.  相似文献   

11.
2D transition metal carbides and nitrides (MXenes), a class of emerging nanomaterials with intriguing properties, have attracted significant attention in recent years. However, owing to the highly hydrophilic nature of MXene nanosheets, assembly strategies of MXene at liquid–liquid interfaces have been very limited and challenging. Herein, through the cooperative assembly of MXene and amine‐functionalized polyhedral oligomeric silsesquioxane at the oil–water interface, we report the formation, assembly, and jamming of a new type MXene‐based Janus‐like nanoparticle surfactants, termed MXene‐surfactants (MXSs), which can significantly enhance the interfacial activity of MXene nanosheets. More importantly, this simple assembly strategy opens a new platform for the fabrication of functional MXene assemblies from mesoscale (e.g., structured liquids) to macroscale (e.g., aerogels), that can be used for a range of applications, including nanocomposites, electronic devices, and all‐liquid microfluidic devices.  相似文献   

12.
Functionalized carbon nanotubes and nanofibers for biosensing applications   总被引:3,自引:0,他引:3  
This review summarizes recent advances in electrochemical biosensors based on carbon nanotubes (CNTs) and carbon nanofibers (CNFs) with an emphasis on applications of CNTs. CNTs and CNFs have unique electric, electrocatalytic and mechanical properties, which make them efficient materials for developing electrochemical biosensors.We discuss functionalizing CNTs for biosensors. We review electrochemical biosensors based on CNTs and their various applications (e.g., measurement of small biological molecules and environmental pollutants, detection of DNA, and immunosensing of disease biomarkers). Moreover, we outline the development of electrochemical biosensors based on CNFs and their applications. Finally, we discuss some future applications of CNTs.  相似文献   

13.
Xin Tong  Lu Ga  Li-getu Bi  Jun Ai 《Electroanalysis》2023,35(2):e202200228
Wearable electrochemical sensors have attracted great interest in health care applications because of their flexibility, biocompatibility, low cost and light weight. This review briefly focuses on the main concepts and methods that are related to the application of nanoparticles (NPs) in wearable electrochemical sensors. Moreover, attempts to bring together different perspectives and terms that are commonly used in NPs-based wearable electrochemical sensors along with the introduction and discussion of common manufacturing methods and recent achievements. In the end, future challenges and prospects are also discussed on the development of wearable electrochemical sensors based on nanoparticles.  相似文献   

14.
There is widespread use of telecommunication and microwave technology in modern society, and raised the electromagnetic interference (EMI) issue to alarming situation due to apprehensive demand and growth of 5G technology undesirably disturbing the human health. The two dimensional (2D) materials including graphene and MXenes are already been used for variety of electronic devices due to their exceptional electrical, mechanical, optical, chemical, and thermal properties. MXene is composed of metal carbides, in which mainly metals are the building blocks for dielectrics, semiconductors, or semimetals. However, the strong interfaces with electromagnetic waves (EM) are variable from terahertz (THz) to gigahertz (GHz) frequency levels and are widely used in EMI and Microwave absorption (MA) for mobile networks and communication technologies. The use of different organic materials with metal, organic, inorganic fillers, polymers nanocomposite and MXene as a novel material has been studied to address the recent advancement and challenges in the microwave absorption mechanism of 2D materials and their nanocomposites. In this concern, various techniques and materials has been reported for the improvement of shielding effectiveness (SE), and theoretical aspects of EMI shielding performance, as well stability of 2D materials particularly MXene, graphene and its nanocomposites. Consequently, various materials including polymers, conducting polymers, and metal–organic frameworks (MOF) have also been discussed by introducing various strategies for improved MA and control of EMI shieling. Here in this comprehensive review, we summarized the recent developments on material synthesis and fabrication of MXene based nanocomposites for EMI shielding and MA. This research work is a comprehensive review majorly focuses on the fundamentals of EMI/MA.  The recent developments and challenges of the MXene and graphene based various structures with different polymeric composites are described in a broader perspective.  相似文献   

15.
In this review, we detail the evolution and recent progress of glove‐based wearable electrochemical sensors with focus on forensic, security, and defense applications. Glove‐based wearable sensors offer the ability to have rapid, on‐site chemical and biological threat assessment, ranging from explosive and gunshot residues to drugs of abuse and pesticides, critical for timely and informed incident management and investigation. Additionally, these field deployable systems offer the ability for law enforcement to complete on‐the‐spot qualitative chemical testing for immediate forensic evidence collection in connection to mechanical ‘swipe’ sampling. Recent advances have been made for translation of this class of wearable electrochemical sensors to increase the sensory perspective of robotics, demonstrating the progression to robotic skin with chemical analysis capability suitable for translation to remote chemical analysis in hazardous scenarios. Critical to such progress have been advances in flexible electrochemically‐compatible materials and design, with increasing functionality, leveraging from advances in wearable biosensors and electronic miniaturization. Indeed, the customization potential of these wearable systems is great, yet challenges remain for advancing these systems from prototypes to more ubiquitous devices readily deployed in the field. With significant attention these challenges can be overcome, creating new opportunities for further decentralization of electrochemical analyses using these flexible and intuitive glove‐based wearable sensing systems for significant impact on fields such as forensics, defense, biomedical, robotics and beyond.  相似文献   

16.
The increasing demand for high-performance rechargeable energy storage systems has stimulated the exploration of advanced electrode materials. MXenes are a class of two-dimensional (2D) inorganic transition metal carbides/nitrides, which are promising candidates in electrodes. The layered structure facilitates ion insertion/extraction, which offers promising electrochemical characteristics for electrochemical energy storage. However, the low capacity accompanied by sluggish electrochemical kinetics of electrodes as well as interlayer restacking and collapse significantly impede their practical applications. Recently, interlayer space engineering of MXenes by different chemical strategies have been widely investigated in designing functional materials for various applications. In this review, an overview of the most recent progress of 2D MXenes engineering by intercalation, surface modification as well as heterostructures design is provided. Moreover, some critical challenges in future research on MXene-based electrodes have been also proposed.  相似文献   

17.
《中国化学快报》2023,34(10):108241
It is established that monitoring blood glucose on a daily basis is one of the most effective solutions to prevent and treat diabetes. Consequently, developing a glucose sensing platform with outstanding sensing performance occupies an indispensable position for the early diagnosis and risk assessment of diabetes. Recently, biosensor has been deemed as a promising apparatus to acquire the signals for glucose monitoring based on 2D materials. However, it is unsatisfied to deploy some materials widely as a result of some inherent defects. Carbon nanotubes have comparatively high toxicity. MoS2 with unfavourable biocompatibility are still arduously implemented on being functionalized. Fortunately, MXene, a brand-new and rapidly developing two-dimensional material, exhibits marvellous application potential in the domain of biosensing. Therefore, it has exerted tremendous attention from diverse scientific fields owning to its remarkable properties, such as excellent hydrophilicity, metal-like conductivity, abundant surface functional groups, unique layered structure, large specific surface area and remarkable biocompatibility. This review mainly focuses on the main synthetic route of MXenes, as well as the recent advancements of biosensors involving MXenes as an electrode modifier for glucose detection. In addition, the promising prospects and challenges of glucose sensing technology based on MXenes are also discussed.  相似文献   

18.
刘欢  马宇  曹斌  朱奇珍  徐斌 《物理化学学报》2023,39(5):2210027-0
水系锌离子电池(AZIBs)作为一种低成本、高安全的新兴且前景广阔的储能技术近年来备受关注。新型MXenes材料由于其独特的结构特征和物理化学性质,如易调节的二维结构、优异的导电性、化学组成多样和可控的表面化学特性,在AZIBs中表现出独特的应用优势。本文全面综述近年来MXenes在AZIBs中应用的研究进展,探讨MXenes应用于AZIBs正负极的结构设计及性能优化策略:在正极方面,MXenes可直接作为活性物质或活性物质前驱体、基体材料,以获得高活性、优异的循环寿命和倍率性能;在负极方面,MXenes可作为锌沉积的二维/三维载体、亲锌基体及锌金属界面保护层,以减缓电化学反应过程中锌金属的腐蚀和枝晶生长。此外,本文也对MXenes基材料在AZIBs中应用的发展方向进行展望。  相似文献   

19.
20.
In this review, laser-induced graphene (LIG) -based electrodes are discussed by covering such essential areas, as a characterization of LIG material properties necessary for electroanalysis, including data on LIG sheet resistance, wettability, spatial resolution, electrochemical characteristics, as well as correlations of “process” - “properties” - “electroanalytical characteristics”of LIG-electrodes. Moreover, typical and innovative LIG-based electrodes designs for electroanalytical applications, including combined multi-analyte multimodal wearable sensors, interdigitated electrodes, are shown. The essential data related to LIG in electroanalysis are summarized in tables. The authors also discussed recent LIG-based electroanalytical applications. Close attention has been paid to LIG glucose sensors and biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号